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Abstract

In this thesis, we present the heuristic technique of Guided Local Search for

combinatorial optimisation problems. The technique sits on top of local search

procedures and has as a main aim to guide these procedures in exploring efficiently

and effectively the vast search spaces of combinatorial optimisation problems. This is

achieved by exploiting prior information known about the problem in conjunction

with historical information gathered during the search process. Information is

converted to constraints which take the form of penalties and modify the cost function

to be minimised. Local search is guided by these constraints, focusing on solutions of

high quality. Guided Local Search can be combined with the neighbourhood reduction

scheme of Fast Local Search which significantly speeds up the operations of the

algorithm.

In this thesis, Guided Local Search is applied to the Travelling Salesman Problem,

Quadratic Assignment Problem, Radio Link Frequency Assignment Problem,

Workforce Scheduling and Function Optimisation. Experimental evaluation and

comparisons with a variety of other heuristic methods on benchmarks instances of the

these problems shows that Guided Local Search compares very favourably to famous

general and specialised heuristic algorithms outperforming many of them on the

benchmark instances considered.
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1. Introduction

Chapter 1

Introduction

In this thesis, we are going to present a technique called Guided Local Search (GLS)

which is suitable for a class of difficult computational problems known as

combinatorial optimisation problems. In this introductory chapter, we will explain the

terminology used in the field, examine combinatorial optimisation problems and

outline some of the most popular techniques suggested so far for tackling them.

1.1 Combinatorial Optimisation and NP-Hard Problems

Combinatorial optimisation problems appear in many areas such as resource

allocation, routing, packing and scheduling. The objective is that of assigning values

to a set of decision variables such that a function of these variables is minimised

perhaps in the presence of some constraints. A combinatorial optimisation problem

can be formulated as follows [Ree96]:

Eq. 1.1                  minimise f(x), x∈X ⊂ Rn

              subject to gi(x) ≥ bi, i = 1,..., m.
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where x is a vector of decision variables and f(⋅) and gi(⋅) are general functions. The

condition x∈X is assumed to constrain decision variables to discrete values. Here, we

have presumed that the problem is that of minimisation but the modification of Eq. 1.1

for maximisation problems is straightforward.

A class of problems of particular interest in combinatorial optimisation is that of

‘hard’ combinatorial optimisation problems. This class includes problems famous for

their difficulty such as the Travelling Salesman Problem (TSP), the Quadratic

Assignment Problem (QAP) and the Vehicle Routing Problem (VRP). Back in the late

60s, many researches recognised the difficulty of such problems and tried to identify

whether ‘polynomial’ algorithms (i.e. algorithms which require a polynomial number

of steps) can be devised to solve them. Nobody since then has been able to devise

such an algorithm for any of these problems and that despite many man-centuries of

research effort invested on the subject by some of the most brilliant researchers. In

fact, there seems to be the case that problems such as the TSP are inherently difficult

to solve, exhibiting an exponential growth in computing time with the size of the

problem.

The hypothesis that no polynomial algorithm exists for solving these problems has

been further supported by advances in the field of computational complexity. We

briefly describe the findings. The interested reader is referred to classical texts on the

subject by Papadimitriou and Steiglitz [PS82] and Garey and Johnson [GJ79] for a

more formal and extensive description of these findings.

In brief, problems which have known polynomial algorithms are said to be in the class

P. A superset of class P is the class NP where NP stands for “non-deterministic

polynomial”. NP consists of all problems that can be solved in polynomial time on a

non-deterministic Turing machine. This includes all problems in P but also ‘hard’
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problems such as the TSP, QAP, VRP, Satisfiability etc. for which all known

algorithms require exponential time.

Hard problems can be transformed one to the other in polynomial time. This property

has been used to define a separate sub-class in NP that of NP-complete problems. All

famous hard combinatorial problems such as the TSP, QAP, Satisfiability, Graph

Colouring, Graph Partitioning, Vehicle Routing etc. belong to this class (see [CK95]

for a comprehensive list of NP-complete problems). If we were to find a polynomial

algorithm for any of these problems, we would have found a polynomial algorithm for

all problems in NP. No polynomial algorithm has been found so far and that despite

considerable efforts and thus it is widely conjectured that no NP-complete problem is

polynomially solvable.

There is a subtle difference here. The above results refer to the ‘decision’ version of

combinatorial optimisation problems where the problem is not that of finding the

optimal solution but finding an answer to a question such as ‘is there a solution with

cost less than C?’. It is obvious that an algorithm for the decision version can be used

to solve the optimisation version by asking a series of questions to this algorithm.

Concluding, optimisation problems as such are not in NP. For the optimisation

versions of NP-complete problems, we will use the term NP-hard1 adopted by many

authors [RB93]. In addition to that and unless otherwise stated, the terms

combinatorial problems and combinatorial optimisation problems will be used to refer

to NP-hard optimisation problems.

                                                          

1 In general, a problem is said to be NP-hard if any problem in NP is polynomialy transformable to it even if the
problem itself is not in NP. If the problem also belongs in NP then it is NP-complete. If you could reduce an NP
problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems in
polynomial time.
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1.2 Exact and Heuristic Search Techniques

The simplest approach to solve a NP-hard optimisation problem is to list all the

feasible solutions, evaluate their objective function values and chose the best. This

approach of complete enumeration, although widely applicable, is unusable in practice

because of the vast number of possible solutions to any problem of reasonable size.

In the early days of combinatorial optimisation, most of the efforts were focused on

Linear Programming (LP). The problem was reformulated by using integer variables

usually taking the values 0 or 1 to produce an integer programming (IP) formulation.

Such a problem can be then solved by variants of a method generally known as

“Branch & Bound” (B&B). Branch and Bound is an efficient enumeration scheme

which avoids complete enumeration of solutions by building a search tree of the

solutions to be evaluated. This tree is pruned during search, so reducing the number of

solutions that need to be evaluated before the optimal solution is found and proved to

be optimal.

The worst case computational complexity of IP algorithms grows exponentially with

the size of the problem. As a result of that, general IP codes usually do not scale well

to large instances of problems. Furthermore, for some problems it is difficult to find

an IP formulation and even if one is found it sometimes results in a large number of

variables and constraints. IP is much more difficult than LP and that because the

problems of concern are NP-hard optimisation problems.

Given the difficulty of NP-hard optimisation problems, many researchers have

focused on another class of techniques known as heuristic techniques or simply

heuristics. These techniques sacrifice the proof of optimality for solutions and instead

focus on finding good near optimal solutions at a reasonable computational cost. In

the early days of Operations Research, heuristics were treated with scepticism.
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Nowadays, mainly due to the theoretical developments in computational complexity

indicating the inherent difficulty of NP-hard problems, heuristics have gained a

prominent position amongst optimisation methods. Following Reeves [Ree96], we

give the following general definition for a method to qualify as a heuristic:

Definition 1-1:

A heuristic technique is a method which seeks good (i.e. near optimal solutions) at a

reasonable computational cost without being able to guarantee optimality, and

possibly not feasibility. Unfortunately, it may not even be possible to state how close

to optimality a particular heuristic solution is.

Despite the rather pessimistic definition, modern heuristics can find high quality

solutions for problems many times larger that those solved to optimality by exact

search methods. From a historical perspective, the ‘gamble’ with heuristics has paid

off leading to many real world systems tackling NP-hard optimisation problems in

resource allocation, routing, scheduling and many other domains. In the rest of the

chapter, we examine some the most famous heuristic techniques starting with Local

Search [PS82] perhaps the oldest heuristic method.

1.3 Local Search

Local Search, also referred to as Neighbourhood Search or Hill Climbing, is the basis

of many heuristic methods for combinatorial optimisation problems. In isolation, it is

a simple iterative method for finding good approximate solutions. The idea is that of

trial and error. For the purposes of explaining local search, we will consider a slightly

different definition of a combinatorial problem to that given in Eq. 1.1.
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A combinatorial optimisation problem is defined by a pair (S, g), where S is the set of

all feasible solutions (i.e. solutions which satisfy the problem constraints) and g is the

objective function that maps each element s in S to a real number. The goal is to find

the solution s in S that minimises the objective function g. The problem is stated as:

Eq. 1.2          min g(s), s∈S.

In the case where constraints difficult to satisfy are also present, penalty terms may be

incorporated in g(s) to drive toward satisfying these constraints. A neighbourhood N

for the problem instance (S, g) can be defined as a mapping from S to its powerset:

Eq. 1.3                                                             N: S → 2S.

N(s) is called the neighbourhood of s and contains all the solutions that can be reached

from s by a single move. Here, the meaning of a move is that of an operator which

transforms one solution to another with small modifications. A solution x is called a

local minimum of g with respect to the neighbourhood N iff:

Eq. 1.4                                                  ( ) ( )g x g y y N x≤ ∀ ∈, ( ) .

Local search is the procedure of minimising the cost function g in a number of

successive steps in each of which the current solution x is being replaced by a solution

y such that:

Eq. 1.5                                                  ( ) ( )g y g x y N x< ∈, ( ) .

A basic local search algorithm begins with an arbitrary solution and ends up in a local

minimum where no further improvement is possible. In between these stages, there are

many different ways to conduct local search. For example, best improvement (greedy)

local search replaces the current solution with the solution that improves most in cost
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after searching the whole neighbourhood. Another example is first improvement local

search which accepts a better solution when it is found. The computational complexity

of a local search procedure depends on the size of the neighbourhood and also the

time needed to evaluate a move. In general, the larger the neighbourhood, the more the

time one needs to search it and the better the local minima.

Local minima are the main problem with local search. Although these solutions may

be of good quality, they are not necessarily optimal. Furthermore if local search gets

caught in a local minimum, there is no obvious way to proceed any further toward

solutions of better cost. Methods that build on local search to remedy this problem are

sometimes referred to as meta-heuristics. One of the first methods in this class is

Repeated Local Search where local search is restarted from a new arbitrary solution

every time it reaches a local minima until a number of restarts is completed. The best

local minimum found over the many runs is returned as an approximation of the

global minimum. Modern meta-heuristics tend to be much more sophisticated than

repeated local search pursuing a range objectives that go beyond simply escaping from

local minima. In the following sections, we examine some of the most successful

modern meta-heuristic techniques.

1.4 Simulated Annealing (SA)

Simulated Annealing (SA) is perhaps the most widely used meta-heuristic. Mainly

because of its simplicity, SA has attracted the interest of many researchers and

practitioners from a wide range of disciplines. The technique has its origins in

statistical mechanics and it was inspired by the physical process of annealing used for

the “cooling” of solids such that they form perfect crystals. Metropolis et al.

[MRRTT53] first described an algorithm for simulating the annealing process.
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Kirkpatrick et al. [KGV83] proposed the use of this simulation algorithm for

searching the solutions of a combinatorial problem.

SA could be described as a randomised scheme which reduces the risk of getting

trapped in local minima by allowing moves to inferior solutions. Given the

neighbourhood N(s) of a combinatorial problem, moves are randomly selected from

this set. A move from a solution s to solution s′ is only accepted if:

• s′ is better than s or

• s′ is worse than s but e R
g s g s

T
− − ′

>
( ( ) ( ))

,

where T is a control parameter called ‘temperature’ and R∈[0,1] is a uniform random

number. The temperature parameter T is initially set to a high value, allowing many

non-improving moves to be accepted and it is gradually reduced to a value where

nearly all non-improving moves are rejected. In this way, the algorithm avoids getting

trapped in local minima until the final stages of search when the temperature is very

low and the algorithm has already settled in a good solution.

There have been many studies on the convergence properties of SA. Research using

the theory of Markov chains has proved that if the temperature is lowered slowly

enough, SA will eventually converge to a global minimum. Unfortunately, the same

research shows that this will, in general, require more iterations than exhaustive

search. For detailed information on convergence results for SA, the reader is referred

to two excellent books by van Laarhoven and Aarts [LA88] and Aarts and Korst

[AK89]. Additionally, Johnson et al. [JAMS89, JAMS91] provide excellent

experimental results for SA on a variety of problems which also may be very useful to

the interested reader.
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1.4.1 Cooling Schedules

In practice, the temperature is lowered according to a scheme referred to as the

annealing (or cooling) schedule. A cooling schedule specifies [Osm95]:

• the initial starting value of the temperature parameter T,

• the cooling rate a and the temperature update rule,

• the number of iterations to be performed at each temperature,

• the termination criterion of the algorithm.

The performance of SA strongly depends on the cooling schedule. Not surprisingly,

many different types of cooling schedules have been suggested. Osman [Osm95]

classifies SA cooling schedules in three categories:

• Stepwise temperature reduction. In this case, the temperature remains constant for

a number of iterations (i.e. selection of a random move followed by the acceptance

test) before it is updated according to the update rule. The update rule commonly

used is a geometric reduction function which reduces the temperature to a(t) = a⋅t,

where a < 1. That is why this type of cooling is often called geometric cooling.

Best performances are reported in the literature for values of a in the range 0.8 ≤ a

≤ 0.99 [Dow93]. The number of iterations at each temperature is related to the size

of the neighbourhood but may also vary from temperature to temperature.

• Continuous temperature reduction [LM86]. In this type of cooling schedule, the

temperature is reduced after every iteration. The reduction of the temperature is

very slow and it is conducted according to the rule a(t) = t/(1+b⋅t) where b is a

small value.

• Non-monotonic temperature reduction [Dow93, Osm93]. The temperature is

reduced after each iteration though occasional increases are also allowed.
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The SA algorithm terminates when the number of uphill moves accepted becomes

negligible or some other type of stopping criterion is satisfied.

1.5 Tabu Search (TS)

Tabu Search (TS) has been developed by Glover [Glo86] and, independently, by

Hansen [Han86]. TS is a meta-heuristic that combines a local search procedure with a

number of anti-cycling rules which prevent the search from getting trapped in local

minima. Over the years, the method has evolved and incorporated many new elements

which further enhance its overall performance.

In this section, we will present the most important elements of TS. The interested

reader may refer to one or more of the excellent survey papers available on the

technique [Glo89, Glo90, GTW93, GL93, Glo94, Glo95, Glo96]. These survey papers

examine in more detail the elements of TS described in this chapter and also outline

some less frequently used elements not examined here.

1.5.1 The Basis for Tabu Search

The basis for tabu search is described by Glover in [Glo95] as follows. Given a

function f(x) to be optimised over a set X, TS begins in the same way as ordinary local

search, proceeding iteratively from one point (solution) to another until a chosen

termination criterion is satisfied. Each x∈X has an associated neighbourhood N(x) ⊂ X

and each solution x′∈N(x) is reached from x by an operation called a move.

TS goes beyond local search by employing a strategy of modifying N(x) as the search

progresses, efficiently replacing it by another neighbourhood N*(x). A key aspect of

tabu search is the use of special memory structures which serve to determine N*(x),

and hence to organise the way in which the space is explored.
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We will start our brief account of TS by examining the so-called recency-based

memory which can be used as a stand-alone device or as the basis for more advanced

TS schemes.

1.5.2 Recency-Based Memory

Recency-based memory is utilising information pertaining to the moves executed by

local search to avoid reversing changes created by these moves. The information used

is the “attributes” of solutions (i.e. solution properties) that change state (i.e. deleted

or added) when a move is executed. These attributes are used to define the “tabu

status” of moves at future iterations, that is, moves which are forbidden to be

executed. For example, if a move m changes the value of a 0-1 variable xj from 0 to 1

then the solution attribute xj = 0 can be used to prevent the reversal of the changes

created by the move. After move m is executed the solution attribute xj = 0 becomes

tabu-active rendering tabu (i.e. forbidden) all moves that reinstate this attribute in the

solution. These restrictions are temporary and they last only for a small number of

iterations. For that purpose, tabu-active attributes are assigned appropriate tabu-

tenures which determine for how many iterations local search is prevented from

reinstating these attributes. This mechanism is sometimes implemented using a data

structure called a tabu list [Glo89].

A move may change the state of more than one solution attribute. In such cases, tabu

restrictions on moves can be defined by rendering a move tabu only if all (or some

number) of its component solution attributes are tabu-active [Glo95]. By deciding on

the combinations of attributes that render a move tabu, we have the flexibility to

strengthen or weaken the tabu restrictions. The choices may vary from a disjunction

between the attributes (more restrictive) to a conjunction (less restrictive). Another
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way of controlling tabu restrictions is to assign different tabu-tenures to different types

of attributes. Furthermore, tabu-tenures may vary during search leading to a dynamic

and robust form of search [Tai91, GTW93].

Another part of recency-based memory are the so-called aspiration criteria which

mainly aim at adding flexibility to compensate for the hard nature of constraints in

recency-based memory. Aspiration criteria are sets of conditions which if satisfied

overrule the tabu restrictions. The most commonly used aspiration criterion is to

accept a move which is classified as tabu if the move generates a solution better than

any previously seen. The interested reader may refer to [GL93] where a more

extensive account is given on the different types of aspiration criteria.

In many applications, recency-based memory is sufficient to produce high quality

solutions. However, this type of memory is of a short-term nature and therefore

insufficient to support a long-term strategy necessary for a more systematic

exploration of the search space. For that purpose, a set of additional tabu search

elements have been developed which are known as long-term memory components.

The two main goals for these components are the intensification and diversification of

search.

1.5.3 Intensification Strategies

The purpose of intensification strategies is to concentrate the search on good regions

of the search space or good solution features. This usually manifests itself in a

solution recording mechanism which keeps a copy of high quality solutions found

during the search. These solutions, often referred to as elite solutions, are used each

time the search progresses slowly to restart it from the good regions which lie around

these elite solutions. The state of the recency-based memory (when the elite solution
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was recorded) may also be saved and partially or fully restored when starting from this

elite solution. Such approaches have been successfully used in vehicle routing [XK96]

and telecommunications network design problems [XCG95].

Another form of intensification is based on identifying “consistent and strongly

determined” variables. A strongly determined variable is one whose value cannot be

changed except by inducing a disruptive effect on the objective function value or the

values of the other variables. On the other hand, a consistent variable is one that is

frequently assigned the same value in good solutions. The idea is to identify the most

consistent and strongly determined variables and assign to these variables their

“preferred” values by reference to a set of elite solutions. This is usually done in the

framework of a multi-start approach where new starting points are generated by

assigning consistent and strongly determined variables to their “preferred” values.

This approach has been successfully applied to the vehicle routing problem [RT95].

1.5.4 Diversification Strategies

Diversification strategies are designed to drive the search into new regions. Often they

are based on modifying choice rules to bring attributes into the solutions that are

infrequently used. More of these schemes are based on type of memory called

frequency-based memory. In short, frequency-based memory is a long-term memory

which either

•  records the frequency at which solution attributes occur in the solutions generated

(residence frequencies)

•  or records the frequency different moves are executed (transition frequencies).
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Residence frequencies are used to encourage the incorporation in the solution of

infrequently used attributes while transition frequencies are used to encourage the

execution of less frequently performed moves.

One way to use the information recorded in residence frequencies is to periodically

restart the search from solutions that incorporate the less frequently used solution

attributes. More often, residence frequencies are used in a continuous fashion by being

directly incorporated in the cost function multiplied by a penalty factor. Attributes

with high frequencies have higher penalties than those with lower frequencies. Thus

the use of the later is encouraged while the use of the former is discouraged.

Transition frequencies are used in a similar way to residence frequencies and penalties

are usually introduced that discourage the execution of frequently executed moves

while encouraging the execution of less frequently executed moves.

Residence or transition frequencies have been successfully used in problems such as

maximum clique [SG96], bin packing [LG93], network design [XCG95], quadratic

assignment [Sko90], machine scheduling [LG93b], vehicle routing [GHL94,

TBGGP95, XK96] and others.

1.5.5 Candidate List Strategies

For many problems, the amount of computational effort required to search the

complete neighbourhood in every iteration is prohibitive. Candidate list strategies are

aiming at reducing this effort by restricting the number of solutions examined on a

given iteration. The different types of candidate list strategies are the following

[Glo95]:
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• Random Strategy. The neighbourhood is randomly sampled until enough moves are

evaluated to give some assurance that some good choices were examined.

• Subdivision Strategy. Moves that involve more than one component are

decomposed and moves which incorporate good components only are examined.

• Aspiration Plus Strategy. This approach establishes a threshold based on the search

history for the quality of moves to be selected and examines moves until finding

one which satisfies this threshold.

• Elite Candidate Lists. A list of elite moves is constructed after searching a large

part of the neighbourhood. At subsequent iterations only solutions from this elite

list are examined until the quality of moves drops below a specified threshold. At

this point a new list is constructed and the process is repeated.

• Sequential Fan Strategy. The idea is to generate some p best alternative moves at a

given step and then to create a fan of solution streams, one for each alternative. The

best available moves for each stream are again examined and only the p best moves

overall provide the p new streams at the next step. This technique is very much

oriented towards parallel processing.

Candidate list strategies conclude our account of Tabu Search. Other elements not

examined here include strategic oscillation, path re-linking, ejection chains,

vocabulary building and probabilistic tabu search. The reader may refer to [GL93,

Glo95, Glo96] for information on these variants. Additionally, the reader may also

refer to [XCG96] on the use of statistical tests to determine the many parameter values

that need to be specified when various elements of TS are integrated together to solve

a combinatorial problem.
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1.6 Genetic Algorithms

Genetic Algorithms (GAs) are a class of methods based on a highly abstract model of

natural evolution. They were developed by Holland in the 70s [Hol75, Gol89, Dav91]

and since then they have been applied to numerous domains. Only recently their

potential application to combinatorial optimisation problems has been investigated.

We first examine some of the terminology used in the GA literature.

A solution to a combinatorial optimisation problem is often called a chromosome,

string or vector. Variables of the problem are called genes and their possible values

alleles. The position of a variable in a chromosome is called its locus. Each

chromosome encodes a solution to the optimisation problem and it is evaluated

according to some fitness function. The fitness function is related to the cost function

of the combinatorial optimisation problem. The fitness value given to a chromosome

by this function represents the suitability of this chromosome (after decoding) as a

solution to the combinatorial problem. For a review of Genetic Algorithm techniques

in the context of combinatorial optimisation the reader may refer to [Ree93].

1.6.1 A Basic GA Algorithm

A basic GA algorithm for a combinatorial problem functions in the following way.

Initially, a finite population of solutions is generated randomly or by other means.

After that, an iterative process is applied to the population which at each step

transforms the current population to a new population. This involves selecting pairs of

parent solutions from the population according to a selection scheme which takes into

account their fitness values and combining them to generate offspring solutions. The

combination of the parents is performed by a special type of operator called the

crossover or recombination operator. After the generation of the ‘children’ random
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changes are inflicted upon them by a second type of operator called the mutation

operator. The children are finally inserted in the population by either replacing their

parents (Canonical GAs) or the weakest individuals in the population (Steady State

GAs2). This completes one iteration of the GA which transforms one generation of

solutions to the next. The algorithm iterates until a termination criterion is satisfied

based either on computational resources, the convergence of the population (high

similarity between the solutions contained in the population) or both. In the following,

we examine more closely the various elements of a GA.

1.6.1.1 Initial Population
The initial population is normally generated at random. Yet in most of the successful

GAs for combinatorial optimisation, solutions in the initial population are

heuristically generated (by a construction heuristic, local search, or sometimes by local

search applied to a solution generated by a construction heuristic) and they are already

of good quality. Particular attention must be paid that the size of this initial population

is not too small to avoid premature convergence of the GA.

1.6.1.2 Genetic Operators
As mentioned above, the crossover operator is used to combine two parent solutions.

There are many versions of this operator. The simplest case is that of the 1-point

crossover. A cut-point X is selected at random and each offspring consists of the pre-

X section from one parent followed by the post-X section from the other. The 1-point

crossover can be extended to 2-point crossover, 3-point crossover or even k-point

crossover. Another useful crossover operator is the uniform crossover where the value

of each variable in each parent is equally likely to be passed to the offspring.

                                                          

2 Steady State GAs also generate one child instead of two children as in Canonical GAs.
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Many combinatorial optimisation problems require special types of operators which

can combine sequences or permutations (often used to represent solutions) to produce

feasible offspring solutions. An example of such an operator for the TSP is the PMX

operator (Partially Mapped Crossover). Many other special operators exist for

different types of combinatorial optimisation problems (see [Ree93] for some

examples).

In addition to crossover and after the generation of the children, a mutation operator is

employed to modify the population of solutions by introducing small random

modifications to solutions randomly selected from the population. If bit vectors are

used for representing the solutions, this frequently means flipping the bits of some of

the solutions. In general, the probability of mutation is very low.

1.6.2 Hybrid GAs.

As Davis states in the Handbook of Genetic Algorithms [Dav91], “Traditional genetic

algorithms, although robust, are generally not the most successful optimisation

algorithm on any particular domain”. For that reason, Davis and many others have

argued that hybridising GAs with the most successful optimisation methods for

particular problems gives one the best of both worlds.

The idea of including in the initial population solutions constructed by a

problem-specific heuristic, mentioned above, can be viewed as a primitive form of

hybridisation.

Several GA approaches which have produced very good results for famous

combinatorial optimisation problems go one step further, utilising local search

algorithms to optimise the solution generated by crossover or mutation operators (see

[MGK88, FF94, FM96]). These GA algorithms essentially work on local minima
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constructed by local search trying to recombine them to produce new and hopefully

better local minima. The rationale is that local minima solutions consist of good

solution fragments which if properly combined by crossover type operators will lead

to solutions where these fragments are combined even better and therefore be of

higher quality. This leads to a type of search intensification around the areas of good

solutions. Diversification of search is also important and is performed by the

particular mutation operator used. From another viewpoint, Hybrid GAs can be seen

as a type of local search which explores the space of good solution fragment

combinations. There are similarities there with tabu search variants which also try to

identify and recombine good solution fragments [RT95]. These tabu search variants

are sometimes seen as part of a wider framework of techniques called Adaptive

Memory Programming [Glo96].

1.7 GENET and Other Weighting Methods for CSPs

Guided Local Search (GLS) studied in this thesis is a meta-heuristic which guides

local search in exploring the vast search spaces of combinatorial problems. The

technique extends to general optimisation problems methods applied with

considerable success to Constraint Satisfaction [Tsa93]. In this section, we will briefly

refer to these methods and in particular to the GENET neural network [WT91, Tsa93,

DTWZ94] which is a direct predecessor of GLS.

The Constraint Satisfaction Problem (CSP) is that of assigning values to a number of

variables with finite domains such that a set of linear or non-linear constraints

involving one or more variables are satisfied. CSP is in general NP-Hard and it is

closely related to the propositional satisfiability or SAT problem [GJ79]. In contrast to

most combinatorial optimisation problems, the goal in CSPs is to find one or all
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feasible solutions. Real world CSPs usually involve difficult non-linear constraints

spanning two or more variables of the problem. Amongst other techniques, local

search has been considered for solving CSPs.

A local search approach to constraint satisfaction treats a CSP as an optimisation

problem. The objective function, which is to be minimised, is the number of

constraints being violated. A typical local search method assigns an arbitrary value to

each variable in the CSP. Then it proceeds iteratively to reduce the number of

constraint violations by re-assigning values to variables, using a heuristic known as

the min-conflict heuristic [MJPL92]. This iterative improvement of the number of

unsatisfied constraints leads either to a solution to the CSP or to a local minimum

where some constraints are still being violated but no further improvement is possible

by changing the value of any of the variables. Local minima are of little use in CSPs

since they violate hard problem constraints.

A successful approach to escape local minima, proposed in the context of CSPs, is to

assign weights to the problem constraints (clauses for SAT) and increase these

weights in a local minima for the violated constraints (unsatisfied clauses for SAT) in

a effort to ‘fill up’ the local minimum until local search escapes from it.

Various algorithms based on this scheme have been developed in the last few years

and applied either to the CSP or the SAT problem. Amongst them GENET [WT91,

Tsa93, DTWZ94], Weighted GSAT [SK93, Fra96], and also the Breakout Method

[Mor93]. Here, we briefly examine GENET which was the point of origin for this

work.
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1.7.1 The GENET Neural Network

GENET is a connectionist approach to constraint satisfaction with a basic operation

that resembles the min-conflicts heuristic. Basically a CSP is represented by a network

in which the nodes represent possible assignments to the variables and the edges

represent constraints. One of the innovations in GENET was the use of and

manipulation of weights assigned to the edges (constraints). All edges are inhibitory

connections which have weights initialised to -1. GENET will continuously select

assignments which receive the least inhibitory input (which roughly means violating

the least number of constraints). The operation of the network is designed in such a

way that will ensure its convergence to some states, which could be solutions or local

minima (in terms of number of constraints violated). Each time the network converges

to a local minimum, the weights associated with the violated constraints are

decreased, and the network is then allowed to converge again. Since GENET always

makes moves which improve the number of constraint violations, decreasing the

weights allows it to escape from the local minimum to states which have lower cost.

Such convergence-learning cycles continue until a solution is found or a stopping

condition is satisfied.

GENET's mechanism for escaping from local minima resembles reinforcement

learning [BSA83]. Basically, patterns in a local minimum are stored in the constraint

weights and are discouraged to appear thereafter. For this reason, the mechanism was

named "learning". GENET's learning scheme can be viewed as a method to transform

the objective function (i.e. the number of constraint violations) so that a local

minimum gains an artificially higher value. Consequently, local search will be able to

leave the local minimum state and search other parts of the space.
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In the CSP context, modifying the weights for unsatisfied constraints in local minima

modifies the cost function of the problem though that does not affect the cost of an

optimal solution which if exists satisfies all the constraints by definition and therefore

always has zero cost.

Guided Local Search (GLS) presented in this thesis utilises a similar approach to

tackle famous combinatorial problems. In these problems, modifications to the cost

function, although they may affect the cost of many solutions of a combinatorial

problem including the optimal can effectively guide local search in the search space.

Apart from escaping local minima in a way similar to GENET and other techniques

for CSP and SAT problems, GLS introduces additional functionality for distributing

the search efforts over the various areas of the search space, taking into account the

promise of these areas to contain the optimal solution. Furthermore, it uses

sophisticated neighbourhood reduction techniques which can speed up the algorithm

many times.

1.8 Overview of the Thesis

In this thesis, we describe the technique of GLS and examine its application to a

comprehensive set of traditional and modern real world combinatorial optimisation

problems. The performance of the technique is experimentally evaluated on

benchmark instances of these problems. Extensive comparisons are conducted with

general and specialised heuristic algorithms including all the general heuristic

methods examined in this chapter. The thesis is structured as follows. In the next

chapter, we present GLS and discuss various extensions to the method. Following

that, five applications of the algorithm are examined in the following order:
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• Travelling Salesman Problem (chapter 3),

• Quadratic Assignment Problem (chapter 4),

• Radio Link Frequency Assignment Problem (chapter 5),

• Workforce Scheduling (chapter 6),

• Non-convex Optimisation (chapter 7).

The thesis concludes with chapter 8 where the work on GLS is summarised and future

research directions are suggested.

Most of the findings in chapter 5 have appeared in the Proceedings of the 2nd

International Conference on Practical Application of Constraint Technology [VT96]

while the results in chapter 6 have appeared in the journal of Operations Research

Letters [TV97]. Earlier results for GLS on the Travelling Salesman Problem,

Quadratic Assignment Problem and Nonconvex Optimisation have been reported in

two Essex University technical reports [VT95a, VT95b].
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2. Guided Local Search

Chapter 2

Guided Local Search

Embarking on this research almost three years ago, the main objective was to extend

GENET for Constraint Satisfaction Problems (CSPs) to a more general class of

problems known as Partial Constraint Satisfaction Problems (PCSPs). Through the

process of trying to apply GENET to PCSPs, we soon realised that a more general

optimisation technique was hidden under GENET’s neural network architecture. This

technique, namely Guided Local Search, is the subject of this chapter and the core of

the thesis.

2.1 History of Guided Local Search

Partial CSPs are CSPs where no solution satisfies all the constraints and one is

interested in solutions which minimise the number of constraint violations and

possibly other application dependent criteria (see section 5.1 for a formal definition).
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The RLFAP problem described in chapter 5 was one of the first problems we tried to

solve using extensions of GENET. The problem is a PCSP and requires the

minimisation of constraint violations combined with domain specific optimisation

criteria. Minimising constraint violations was within the capabilities of the GENET

neural network but minimising the other RLFAP optimisation criteria seemed difficult

and required extra complexity in the neural network architecture. Because of that, we

decided at the time to convert GENET to a pure algorithm, abandoning any efforts to

solve the problem by extending the model of the neural network. This resulted in the

Tunnelling Algorithm [VT94] which was very successful in the RLFAP instances and

moreover preserved the good performance of GENET on classic CSPs. While

experimenting with the tunnelling algorithm, we had the idea to apply the method to

the Travelling Salesman Problem (TSP), utilising some of the work we did on the

modelling of RLFAP’s optimisation criteria. To our surprise, the method worked

extremely well on the TSP and some preliminary results on that were included in the

paper on the tunnelling algorithm [VT94].

The success on the TSP convinced us of the great potential of the algorithm. We

generalised the Tunnelling Algorithm even further, so that it could be applied to the

bulk of combinatorial optimisation. The result of this generalisation was Guided Local

Search. Guided Local Search exceeded all our expectation. We applied the method to

seven Combinatorial Optimisation problems and obtained very good results both in

terms of solution quality and running times. The method and five of its applications

will be presented in this thesis. We start by introducing the principles of Guided Local

Search.
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2.2 Guided Local Search Principles

Guided Local Search is a general and compact optimisation technique suitable for a

wide range of combinatorial optimisation problems. Guided Local Search takes

advantage of problem and search-related information to guide local search in a search

space. This is made possible by augmenting the cost function of the problem to

include a set of penalty terms. Local search is confined by the penalty terms and

focuses attention on promising regions of the search space. Iterative calls are made to

local search. Each time local search gets caught in a local minimum, the penalties are

modified and local search is called again to minimise the modified cost function.

Penalty modifications regularise the solutions generated by local search to be in

accordance with prior information or information gathered during search. The

approach taken by GLS is analogous to that of regularisation methods for ‘ill-posed’

problems [TAJ77, Hay94]. The idea behind regularisation methods and GLS, to an

extent, is the use of prior information to help us solve an approximation problem.

Prior information translates to constraints which further define our problem, so

reducing the number of candidate solutions to be considered. GLS also exploits

information learnt during search by imposing extra constraints on the basis of this

information. GLS is essentially a meta-heuristic based on local search. In the

following sections, we examine the various components of GLS.

2.3 Local Search

Local search is the basis of many heuristic methods for combinatorial optimisation

problems. In section 1.3, we presented an overview of local search. A variety of

moves and local search procedures have been used for the problems in this study. For
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the purpose of describing GLS in the general case, local search is considered a general

procedure of the form:

s2 ←  procedure LocalSearch(s1,g),

where s1 is the initial solution, s2 the final solution (local minimum) and g the cost

function to be minimised.

In contrast to other general meta-heuristics such as SA and tabu search, GLS is not

modifying the internal mechanisms of local search. Instead, it makes iterative calls to

a local search procedure modifying the cost function between successive calls. Before

that, the cost function of the problem is augmented to include a set of penalty terms

which enable us to constrain solutions dynamically. This augmentation of the cost

function with penalty terms is explained in the next section.

2.4 Solution Features

GLS employs solution features to characterise solutions. A solution feature can be any

solution property that satisfies the simple constraint that is a non-trivial one. What it is

meant by that is that not all solutions have this property. Some solutions have the

property while others do not. Solution features are problem dependent and serve as the

interface between the algorithm and a particular application.

Constraints on features are introduced or strengthened on the basis of information

about the problem and also the course of local search. Information pertaining to the

problem is the cost of features. The cost of features represents the direct or indirect

impact of the corresponding solution properties on the solution cost. Feature costs

may be constant or variable. Information about the search process pertains to the

solutions visited by local search and in particular local minima. A feature fi is

represented by an indicator function in the following way:
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2.5 Augmented Cost Function

Constraints on features are made possible by augmenting the cost function g of the

problem to include a set of penalty terms. The new cost function formed is called the

augmented cost function and it is defined as follows:

Eq. 2.2                                           ( ) ( )h s g s p I si i
i

M

( ) = + ⋅ ⋅
=
∑λ

1

,

where M is the number of features defined over solutions, pi is the penalty parameter

corresponding to feature fi and λ (lambda) is the regularisation parameter. The

penalty parameter pi gives the degree up to which the solution feature fi is constrained.

The regularisation parameter λ represents the relative importance of penalties with

respect to the solution cost and is of great significance because it provides a means to

control the influence of the information on the search process. GLS iteratively uses

local search and it simply modifies the penalty vector p given by:

Eq. 2.3                                                       p = (p1, ..., pM)

each time local search settles in a local minimum. Modifications are made on the basis

of information. Initially, all the penalty parameters are set to 0 (i.e. no features are

constrained) and a call is made to local search to find a local minimum of the

augmented cost function. After the first local minimum and every other local

minimum, the algorithm takes a modification action on the augmented cost function

and re-applies local search, starting from the previously found local minimum. The

modification action is that of simply incrementing by one the penalty parameter of one
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or more of the local minimum features. Prior and historical information is gradually

inserted into the augmented cost function by selecting which penalty parameters to

increment.

Sources of information are the cost of features and the local minimum itself. Let us

assume that each feature fi defined over the solutions is assigned a cost ci. This cost

may be constant or variable. In order to simplify our analysis, we consider feature

costs to be constant and given by the cost vector c:

Eq. 2.4                                                    c = (c1, ...,cM)

which contains positive or zero elements. A particular local minimum solution s*

exhibits a number of features. Indicators of the features fi exhibited take the value 1

(i.e. ( )I si * = 1).

2.6 Penalty Modifications

In a local minimum s*, the penalty parameters are incremented by one for all features fi

that maximise the utility expression:

Eq. 2.5                                                ( ) ( )util s f I s c
pi i

i

i
* *, = ⋅

+1
 .

In other words, incrementing the penalty parameter of the feature fi is considered an

action with utility given by Eq. 2.5. In a local minimum, the actions with maximum

utility are selected and then performed. The penalty parameter pi is incorporated in Eq.

2.5 to prevent the scheme from being totally biased towards penalising features of

high cost. The role of the penalty parameter in Eq. 2.5 is that of a counter which

counts how many times a feature has been penalised. If a feature is penalised many
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times over a number of iterations then the term c
p

i

i1+
 in Eq. 2.5 decreases for the

feature, diversifying choices and giving the chance for other features to also be

penalised. The policy implemented is that features are penalised with a frequency

proportional to their cost. Due to Eq. 2.5, features of high cost are penalised more

frequently than those of low cost. The search effort is distributed according to promise

as it is expressed by the feature costs and the already visited local minima, since only

the features of local minima are penalised. Incremental distribution of the search effort

according to prior information, though in a probabilistic framework, can be found in a

class of methods based on the optimal search theory of Koopman [Koo57, Sto83].

Also, counter based schemes for search diversification analogous to that of GLS are

used under the name counter-based exploration in reinforcement learning [Thr92].

The basic GLS algorithm as described so far is depicted in Figure 2.1.

procedure GuidedLocalSeach(S, g, λ, [I1, ...,IM], [c1,...,cM], M)
begin

k ← 0;
s0 ← random or heuristically generated solution in S;
for i ←1 until M do /* set all penalties to 0 */

pi  ← 0;
while StoppingCriterion do
begin

h ← g + λ * ∑pi*Ii ;
sk+1 ← LocalSearch(sk, h);
for i ←1 until M do

utili ← Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do

pi ← pi + 1;
k ← k+1;

end
s* ← best solution found with respect to cost function g;
return s*;

end

where S: search space, g: cost function, h: augmented cost function, λ: regularisation parameter, Ii:
indicator function for feature i, ci: cost for feature i, M: number of features, pi: penalty for feature i.

 Figure 2.1 Guided Local Search in pseudocode
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As we will see in the following chapters, this simple algorithm can be applied with

simple modifications to a variety of optimisation problems. Applying the algorithm to

a problem usually involves defining the features to be used, assigning costs to the

them and finally substituting the procedure LocalSearch in the GLS loop with a local

search algorithm for the problem in hand.

2.7 Regularisation Parameter

Something that has been left out from the analysis so far is the regularisation

parameter λ in the augmented cost function Eq. 2.2. This parameter determines the

degree up to which constraints on features are going to affect local search. Let us

examine how the regularisation parameter is going to affect the moves performed by a

local search method. A move alters the solution, adding new features and removing

existing features, whilst leaving other features unchanged. In the general case, the

difference ∆h in the value of the augmented cost function due to a move is given by

the following difference equation:

Eq. 2.6                                          ∆ ∆ ∆h g p Ii
i

M

i= + ⋅
=
∑λ

1
.

As we can see in Eq. 2.6, if λ is large then the selected moves will solely remove the

penalised features from the solution and the information will fully determine the

course of local search. This introduces risks because information may be wrong.

Conversely, if λ is 0 then local search will not be able to escape from local minima.

However, if λ is small and comparable to ∆g then the moves selected will aim at the

combined objective of improving the solution (taking into account the cost

differences) and also removing the penalised features (taking into account the
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information). Since the difference ∆g is problem dependent, the regularisation

parameter is also problem dependent. GLS can be quite tolerant to the choice of the λ,

operating well for a wide range of values. In the applications, we are going to

elaborate further on the role of this parameter and on how it affects GLS in specific

problems.

2.8 Fast Local Search and Other Improvements

There are both minor and major optimisations that significantly improve the basic

GLS method. For example, instead of calculating the utilities for all the features, we

can restrict ourselves to the local minimum features since for non-local minimum

features the utility as given by Eq. 2.5 takes the value 0. Also, the evaluation

mechanism for moves needs to be changed to work efficiently on the augmented cost

function. Usually, this mechanism is not directly evaluating the cost of the new

solution generated by the move but it calculates the difference ∆g caused to the cost

function. This difference in cost should be combined with the difference in penalty as

is shown in Eq. 2.6. This can be easily done and has no significant impact on the time

needed to evaluate a move. In particular, we have to take into account only features

that change state (being deleted or added). The penalty parameters of the features

deleted are summed together. The same is done for the penalty parameters of features

added. The change in penalty due to the move is then simply given by the difference:

Eq. 2.7                                      − +∑ ∑p pj k
over all features j added over all features k deleted

.

Leaving behind the minor improvements, we turn our attention to the major

improvements. In fact, these improvements do not directly refer to GLS but to local

search. Greedy local search selects the best solution in the whole neighbourhood. This



44

can be very time-consuming, especially if we are dealing with large instances of

problems. Next, we are going to present Fast Local Search (FLS), which drastically

speeds up the neighbourhood search process by redefining it. The method is a

generalisation of the approximate 2-opt method proposed in [Ben92] for the

Travelling Salesman Problem. The method also relates to Candidate List Strategies

used in tabu search (see section 1.5.5).

FLS works as follows. The current neighbourhood is broken down into a number of

small sub-neighbourhoods and an activation bit is attached to each one of them. The

idea is to scan continuously the sub-neighbourhoods in a given order, searching only

those with the activation bit set to 1. These sub-neighbourhoods are called active

sub-neighbourhoods. Sub-neighbourhoods with the bit set to 0 are called inactive

sub-neighbourhoods and they are not being searched. The neighbourhood search

process does not restart whenever we find a better solution but it continues with the

next sub-neighbourhood in the given order. This order may be static or dynamic (i.e.

change as a result of the moves performed).

Initially, all sub-neighbourhoods are active. If a sub-neighbourhood is examined and

does not contain any improving moves then it becomes inactive. Otherwise, it remains

active and the improving move found is performed. Depending on the move

performed, a number of other sub-neighbourhoods are also activated. In particular, we

activate all the sub-neighbourhoods where we expect other improving moves to occur

as a result of the move just performed. As the solution improves the process dies out

with fewer and fewer sub-neighbourhoods being active until all the

sub-neighbourhood bits turn to 0. The solution formed up to that point is returned as

an approximate local minimum.
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The overall procedure could be many times faster than conventional local search. The

bit setting scheme encourages chains of moves that improve specific parts of the

overall solution. As the solution becomes locally better the process is settling down,

examining fewer moves and saving enormous amounts of time which would otherwise

be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions, when

they are combined with GLS they become very powerful optimisation tools.

Combining GLS with FLS is straightforward. The key idea is to associate solution

features to sub-neighbourhoods. The associations to be made are such that for each

feature we know which sub-neighbourhoods contain moves that have an immediate

effect upon the state of the feature (i.e. moves that remove the feature from the

solution). The combination of the GLS algorithm with a generic FLS algorithm is

depicted in Figure 2.2.

The procedure GuidedFastLocalSearch in Figure 2.2 works as follows. Initially, all

the activation bits are set to 1 and FLS is allowed to reach the first local minimum (i.e.

all bits 0). Thereafter, and whenever a feature is penalised, the bits of the associated

sub-neighbourhoods and only those are set to 1. In this way, after the first local

minimum, fast local search calls examine only a number of sub-neighbourhoods and

in particular those which associate to the features just penalised. This dramatically

speeds up GLS. Moreover, local search is focusing on removing the penalised features

from the solution instead of considering all possible modifications.
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procedure GuidedFastLocalSearch(S, g, λ, [I1, ...,IM], [c1,...,cM], M, L)
begin

k ← 0; s0 ← random or heuristically generated solution in S;
for i ←1 until M do pi  ← 0; /* set all penalties to 0 */
for i ←1 until L do biti  ← 1; /* set all sub-neighbourhoods to the active state */
while StoppingCriterion do
begin

h ← g + λ * ∑pi*Ii ;
sk+1 ← FastLocalSearch(sk, h,[bit1, …,bitL], L);
for i ←1 until M do utili ← Ii(sk+1) * ci / (1+pi);
for each i such that utili is maximum do
begin

pi ← pi + 1;
SetBits ← SubNeighbourhoodsForFeature(i);
/* activate sub-neighbourhoods relating to feature i penalised */
for each bit b in SetBits do b ← 1;

end
k ← k+1;

end
s* ← best solution found with respect to cost function g;
return s*;

end

procedure FastLocalSeach(s, h, [bit1, …,bitL], L)
begin

while ∃bit, bit = l do
for i ←1 until L do
begin

if biti = 1 then /* search sub-neighbourhood for improving moves */
begin

Moves ← set of moves in sub-neighbourhood i;
for each move m in Moves do
begin

s′ ← m(s);
/* s′ is the solution generated by move m when applied to s */
if h(s′) < h(s) then /* for minimisation */
begin

biti ← 1;
SetBits ← SubNeighbourhoodsForMove(m);
/* spread activation to other sub-neighbourhoods */
for each bit b in SetBits do b ← 1;
s ← s′;
goto ImprovingMoveFound

end
end
biti ← 0; /* no improving move found */

end
ImprovingMoveFound: continue;

end;
return s;

end

where S: search space, g: cost function, h: augmented cost function, λ: regularisation parameter, Ii: indicator
function for feature i, ci: cost for feature i, M: number of features, L: number of sub-neighbourhoods, pi: penalty for
feature i, biti: activation bit for sub-neighbourhood i, SubNeighbourhoodsForFeature(i): procedure which returns
the bits of the sub-neighbourhoods corresponding to feature i, and SubNeighbourhoodsForMove(m): procedure
which returns the bits of the sub-neighbourhoods to spread activation to when move m is performed.

Figure 2.2 Guided Local Search combined with Fast Local Search in pseudocode
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Apart from the combination of GLS with fast local search, other variations of GLS to

be presented in the applications include:

• features with variable costs where the cost of a feature is calculated during search

and in the context of a particular local minimum (see chapter 4)

• penalties with limited duration (see chapter 4)

• multiple feature sets where each feature set is processed in parallel by a different

penalty modification procedure (see chapter 4)

• feature set hierarchies where more important features overshadow less important

feature sets in the penalty modification procedure (see chapter 5).

Before presenting the applications of GLS, we examine some of the links between

GLS and other general optimisation methods also based on local search.

2.9 Connections with Other General Optimisation Techniques

2.9.1 Simulated Annealing

Non-monotonic temperature reduction schemes used in SA (see section 1.4) also

referred to as re-annealing or re-heating schemes are of particular interest in relation

to the work presented in this thesis. In these schemes, the temperature is decreased as

well as increased in a attempt to remedy the problem that the annealing process

eventually settles down failing to continuously explore good solutions. In a typical

SA, good solutions are mainly visited during the mid and low parts of the cooling

schedule. For resolving this problem, it has been even suggested annealing at a

constant temperature high enough to escape local minima but also low enough to visit

them [Con90]. It is seems extremely difficult to find such a temperature because it has
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to be landscape dependent (i.e. instance dependent) if not dependent of the area of the

search space currently searched.

Guided Local Search presented in this thesis can be seen as addressing this problem of

visiting local minima but also being able to escape from them. Instead of random

up-hill moves, penalties are utilised to force local search out of local minima. The

amount of penalty applied is progressively increased in units of appropriate magnitude

(i.e. parameter λ) until the method escapes from the local minimum. GLS can be seen

adapting to the different parts of the landscape. The algorithm is continuously visiting

new solutions rather than converging to any particular solution as SA does.

Another important difference between this work and SA is that GLS is a deterministic

algorithm. This is also the case for a wide number of algorithms developed under the

tabu search framework.

2.9.2 Tabu Search

GLS has close links with tabu search. Both techniques can be seen as using

information (historical in the case of tabu search, prior and historical information in

the case of GLS) to impose constraints on local search either by modifying the

neighbourhood (tabu search) or by modifying the cost function to be minimised

(GLS). Let us consider the neighbourhood graph where each node is a solution to the

problem and the arcs are the moves which transform one solution to another. GLS

adopts a “solution or node”-centred approach to constrain local search by elevating the

cost of specific nodes (i.e. solutions), rather than the “move or arc”-centred approach

adopted by many tabu search variants which prevents local search from traversing

specific arcs (i.e. executing moves which are tabu). The two approaches can be seen to
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be seeking the same goal (i.e. guide local search by using constraints) though they use

different means to achieve that.

Solution attributes used in tabu search can been seen as corresponding to the solution

features used in GLS. However, constraints on solution attributes by tabu search may

take many forms (i.e. tabu lists, frequency-based penalties) while in GLS a single

mechanism is used which utilises indicator functions to introduce constraints on

solution features.

Rather than elevate selected penalties to drive the search out of a local minimum, as

GLS does, the typical tabu search approach seeks a best move to escape from a local

minimum based on the current evaluation function, influenced by prior memory and

by candidate list strategies. Penalties in tabu search are customarily applied to selected

attributes only after the move is made, as a way of preventing a return. Tabu search

also typically maintains a recency-based memory to provide a mechanism to avoid

reinstating selected attribute combinations found in recently generated solutions.

Diversification strategies that make use of frequency-based memory are generally

activated periodically, rather than continuously as in GLS.

A more detailed list of the various search elements that are present in both techniques

along  with the ways they are realised in each individual technique is given in Table

2.1. As we can see in this table, despite the differences between tabu and guided local

search, there is common ground in many areas. This common ground may well be

utilised in the future to define a more abstract class of methods which one may call

Intelligent Search methods.
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Tabu Search Guided Local Search
Local search guidance
mechanism

modified neighbourhood, intelligent
restarts

modified cost function

Information used mainly the moves executed but also
transition & residence frequencies and
elite solution sets

feature costs, local minima visited

Constraints • hard constraints on moves or
solution attributes based on moves
recently executed, aspiration criteria
override the hard constraints

• soft constraints on moves or
solution attributes based on
transition or residence frequencies

soft constraints on solution features
based on search plan for
distributing search effort taking into
account the local gradients

Memory Utilised • tabu lists recording attributes of
moves recently executed

• frequency based memory recording
the frequency of moves or solution
attributes during search

memory of penalty modification
actions taken by GLS also used for
recording penalties on features

Intervention Period • every iteration (recency-based
memory, some types of
diversification strategies)

• every N iterations or when local
search fails to discover new better
solutions (intensification strategies,
diversification strategies)

at a local minimum of the
augmented cost function

Search Objectives • avoid getting trapped in local
minima and reversing changes
created by the moves (proactive
approach).

• Intensification: restart when slow
progress (reactive approach)

• Diversification: examine history
and penalise moves frequently
executed or solution attributes
frequently appearing in solutions
(reactive approach)

• escape from local minima
(reactive approach)

• plan and distribute search efforts
in the short or long term
according to feature costs taking
into account the local gradients
(proactive approach).

Intensification -
Diversification balance

- The lambda parameter of GLS
controls that.
• Low lambda leads to

intensification (due to cost
function term in the augmented
cost function).

• High lambda leads to
diversification (due to penalty
function term in the augmented
cost).

Neighbourhood
Reduction Mechanism

Candidate Lists Strategies Fast Local Search fully integrated
with the diversification -
intensification mechanisms of GLS

Table 2.1 Links between Guided Local Search and Tabu Search methods.
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2.10 GLS Applications

GLS is a generalisation of GENET and as such it can be applied with the same success

as GENET in any of the applications of the latter (i.e. CSP problems). Apart from that,

GLS has been successfully applied to a set of seven problems in combinatorial

optimisation. This set includes the famous Travelling Salesman and Quadratic

Assignment problems, the real-world problems of Radio Link Frequency Assignment,

Workforce Scheduling, Bandwidth Packing and Maximum Channel Assignment, and

finally a continuous Nonconvex Optimisation problem. FLS has also been applied to

all these problems except for the Quadratic Assignment Problem and the NonConvex

Optimisation problem. All these applications of GLS and FLS are examined in this

thesis except for the Bandwidth Packing and Maximum Channel Assignment

problems for which GLS and FLS have been applied in a way similar to that for the

Workforce Scheduling problem examined in chapter 6. However, demonstration

programs have been developed for both the Bandwidth Packing and Maximum

Channel Assignment problems which can be obtained via WWW at

http://cswww.essex.ac.uk/CSP/demos.
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3. Travelling Salesman Problem

Chapter 3

Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most famous problems in

combinatorial optimisation. In this chapter, we are going to examine how guided local

search and fast local search can be applied to the problem. The combination of GLS

and FLS with TSP local search heuristics of different efficiency and effectiveness will

be studied in an effort to determine the dependence of GLS on local search.

Comparisons will be made with some of the best TSP heuristic algorithms and general

optimisation techniques which will demonstrate the advantages of GLS over

alternative heuristic approaches suggested so far for this problem.

3.1 The Problem

There are many variations of the Travelling Salesman Problem (TSP). In this work,

we examine the classic symmetric TSP. The problem is defined by N cities and a

symmetric distance matrix D=[dij] which gives the distance between any two cities i



53

and j. The goal in TSP is to find a tour (i.e. closed path) which visits each city exactly

once and is of minimum length. A tour can be represented as a cyclic permutation π

on the N cities if we interpret π(i) to be the city visited after city i, i = 1,... ,N. The cost

of a permutation is defined as:

 Eq. 3.1                                                   ( ) ( )g di i
i

N

π π=
=
∑

1

and gives the cost function of the TSP [PS82].

Recent and comprehensive surveys of TSP methods are those by Laporte [Lap92],

Reinelt [Rei94] and Johnson & McGeoch [JM95]. The reader may also refer to

[LLKS85] for a classical text on the TSP. The state of the art is that problems up to

1,000,000 cities are within the reach of specialised approximation algorithms [Ben92].

Moreover, the optimal solutions have been found and proven for non-trivial problems

of size up to 7397 cities [JM95]. Nowadays, TSP plays a very important role in the

development and testing of new optimisation techniques. In this context, we examine

how guided local search and fast local search can be applied to this problem.

3.2 Local Search Heuristics for the TSP

Local search for the TSP is synonymous with k-Opt moves. Using k-Opt moves,

neighbouring solutions can be obtained by deleting k edges from the current tour and

reconnecting the resulting paths using k new edges. The k-Opt moves are the basis of

the three most famous local search heuristics for the TSP, namely 2-Opt [Cro58],

3-Opt [Lin65] and Lin-Kernighan (LK) [LK73]. These heuristics define

neighbourhood structures which can be searched by the different neighbourhood

search schemes described in sections 1.3 and 2.8, leading to many local optimisation
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algorithms for the TSP. The neighbourhood structures defined by 2-Opt, 3-Opt and

LK are as follows [Joh90]:

2-Opt. A neighbouring solution is obtained from the current solution by deleting two

edges, reversing one of the resulting paths and reconnecting the tour (see Figure 3.1).

The worst case complexity for searching the neighbourhood defined by 2-Opt is O(n2).

3-Opt. In this case, three edges are deleted. The three resulting paths are put together

in a new way, possibly reversing one or more of them (see Figure 3.1). 3-Opt is much

more effective than 2-Opt, though the size of the neighbourhood (possible 3-Opt

moves) is larger and hence more time-consuming to search. The worst case

complexity for searching the neighbourhood defined by 3-Opt is O(n3).

Figure 3.1 k-Opt moves for the TSP

Lin-Kernighan (LK). One would expect “4-Opt” to be the next step after 3-Opt but

actually that is not the case. The reason is that 4-Opt neighbours can be remotely apart

because “non-sequential” exchanges such as that shown in Figure 3.1 are possible for

k ≥ 4. To improve 3-Opt further, Lin and Kernighan developed a sophisticated edge

exchange procedure where the number k of edges to be exchanged is variable [LK73].

The algorithm is mentioned in the literature as the Lin-Kernighan (LK) algorithm and

it was considered for many years to be the “uncontested champion” of local search

a) 2-Opt move b) 3-Opt move c) Non-sequential 4-Opt move
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heuristics for the TSP. Lin-Kernighan uses a very complex neighbourhood structure

which we will briefly describe here.

LK, instead of examining a particular 2-Opt or 3-Opt exchange, is building an

exchange of variable size k by sequentially deleting and adding edges to the current

tour while maintaining tour feasibility. Given node t1 in tour T as a starting point: In

step m of this sequential building of the exchange: edge (t1, t2m) is deleted, edge (t2m,

t2m+1) is added, and then edge (t2m+1, t2m+2) is picked so that deleting edge (t2m+1, t2m+2)

and joining edge (t2m+2, t1) will close up the tour giving tour Tm. The edge (t2m+2, t1) is

deleted if and when step m+1 is executed. The first three steps of this mechanism are

illustrated in Figure 3.2.

Figure 3.2 The first three steps of the Lin-Kernighan edge exchange mechanism

As we can see in this figure, the method is essentially executing a sequence of 2-Opt

moves. The length of these sequences (i.e. depth of search) is controlled by the LK’s

gain criterion which limits the number of the sequences examined. In addition to that,

limited backtracking is used to examine the sequences that can be generated if a

number of different edges are selected for addition at steps 1 and 2 of the process.

The neighbourhood structure described so far, although it provides the depth needed,

is lacking breadth, potentially missing improving 3-Opt moves. To gain breadth, LK
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temporarily allows tour infeasibility, examining the so-called “infeasibility” moves

which consider various choices for nodes t4 to t8 in the sequence generation process,

examining all possible 3-Opt moves and more. Figure 3.3 illustrates the

infeasibility-move mechanism. The interested reader may refer to the original paper by

Lin and Kernighan for a more elaborate description of this mechanism.

Figure 3.3 Lin-Kerhighan’s infeasibility moves

LK is the standard benchmark against which all heuristic methods are tested. The

worst case complexity for searching the LK neighbourhood is O(n5).

Implementations of 2-Opt, 3-Opt and LK-based local search methods may vary in

performance. A very good reference for efficiently implementing local search

procedures based on 2-Opt and 3-Opt is that by Bentley [Ben92]. In addition to that,

Reinelt [Rei94] and also Johnson and McGeoch [JM95] describe some improvements

that are commonly incorporated in local search algorithms for the TSP. We will refer

to some of them later in this chapter. The best reference for the LK algorithm is the

original paper by Lin and Kernighan [LK73]. In addition to that, Johnson and

McGeoch [JM95] provide a good insight into the algorithm and its operations along

with information on the many variants of the method. A modified LK version which

avoids the complex infeasibility moves without significant impact on performance is

described in [MM93].
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Fast local search and guided local search can be combined with the neighbourhood

structures of 2-Opt, 3-Opt and LK with minimal effort. This will become evident in

the next sections where fast local search and guided local search for the TSP are

presented and discussed.

3.3 Fast Local Search Applied to the TSP

A fast local search procedure for the TSP using 2-Opt has already been suggested by

Bentley [Ben92]. Under the name Don’t Look Bits, the same approach has been used

in the context of 2-Opt, 3-Opt and LK by Codenotti et al. [CMMR96] to reduce the

running times of these heuristics in very large TSP instances. More recently, Johnson

et al. [JBMR96] also use the technique to speed up their LK variant (see [JM95]). In

the following, we are going to describe how fast local search variants of 2-Opt, 3-Opt

and LK can be developed on the guidelines for fast local search presented in section

2.8.

2-Opt, 3-Opt and LK-based local search procedures are seeking tour improvements by

considering for exchange each individual edge in the current tour and trying to extend

this exchange to include one (2-Opt), two (3-Opt) or more (LK) other edges from the

tour. Usually, each city is visited in tour order and one or both3 the edges adjacent to

the city are checked if they can lead to an edge exchange which improves the solution.

We can exploit the way local search works on the TSP to partition the neighbourhood

in sub-neighbourhoods as required by fast local search. Each city in the problem may

be seen as defining a sub-neighbourhood which contains all edge exchanges

                                                          

3 In our work, if approximations are used such as nearest neighbour lists or fast local search then both edges
adjacent to a city are examined, otherwise only one of the edges adjacent to the city is examined.
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originating from either one of the edges adjacent to the city. For a problem with N

cities, the neighbourhood is partitioned into N sub-neighbourhoods, one for each city

in the instance. Given the sub-neighbourhoods, fast local search for the TSP works in

the following way (see also Figure 2.2).

Initially all sub-neighbourhoods are active. The scanning of the sub-neighbourhoods,

defined by the cities, is done in an arbitrary static order (e.g. from 1st to Nth city).

Each time an active sub-neighbourhood is found, it is searched for improving moves.

This involves trying either edge adjacent to the city as bases for 2-Opt, 3-Opt or LK

edge exchanges, depending on the heuristic used. If a sub-neighbourhood does not

contain any improving moves then it becomes inactive (i.e. bit is set to 0). Otherwise,

the first improving move found is performed and the cities (corresponding

sub-neighbourhoods) at the ends of the edges involved (deleted or added by the move)

are activated (i.e. bits are set to 1). This causes the sub-neighbourhood where the

move was found to remain active and also a number of other sub-neighbourhoods to

be activated. The process always continues with the next sub-neighbourhood in the

static order. If ever a full rotation around the static order is completed without making

a move, the process terminates and returns the tour found. The tour is declared

2-Optimal, 3-Optimal or LK-Optimal, depending on the type of the k-Opt moves used.

3.3.1 Local Search Procedures for the TSP

Apart from fast local search, first improvement and best improvement local search

(see section 1.3) can also be applied to the TSP. First improvement local search

immediately performs improving moves while best improvement (greedy) local search

performs the best move found after searching the complete neighbourhood.
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Fast local search for the TSP described above can be easily converted to first

improvement local search by searching all sub-neighbourhoods irrespective of their

state (active or inactive). The termination criterion remains the same with fast local

search: that is, to stop the search when a full rotation of the static order is completed

without making a move. The LK algorithm as originally proposed by Lin and

Kernighan [LK73] performs first improvement local search.

Fast local search can also be modified to perform best improvement local search. In

this case, the best move is selected and performed after all the sub-neighbourhoods

have been exhaustively searched. The algorithm stops when a solution is reached

where no improving move can be found. The scheme is very time consuming to be

combined with the 3-Opt and LK neighbourhood structures and it is mainly intended

for use with 2-Opt. Considering the above options, we implemented seven local

search variants for the TSP (implementation details will be given later in this chapter).

These variants were derived by combining the different search schemes at the

neighbourhood level (i.e. fast, first improvement, and best improvement local search)

with any of the 2-Opt, 3-Opt, or LK neighbourhood structures. Table 3.1 illustrates the

variants and also the names we will use to distinguish them in the rest of the chapter.

Name Local Search Type Neighbourhood Type
BI-2Opt Best Improvement 2-Opt
FI-2Opt First Improvement 2-Opt
FLS-2Opt Fast Local Search 2-Opt
FI-3Opt First Improvement 3-Opt
FLS-3Opt Fast Local Search 3-Opt
FI-LK First Improvement LK
FLS-LK Fast Local Search LK

Table 3.1 Local search procedures implemented for the study of GLS on the TSP.
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3.4 Guided Local Search Applied to the TSP

3.4.1 Solution Features and Augmented Cost Function

The first step in the process of applying GLS to a problem is to find a set of solution

features that are accountable for part of the overall solution cost. For the TSP, a tour

includes a number of edges and the solution cost (tour length) is given by the sum of

the lengths of the edges in the tour (see Eq. 3.1). Edges are ideal features for the TSP.

First, they can be used to define solution properties (a tour either includes an edge or

not) and second, they carry a cost equal to the edge length, as this is given by the

distance matrix D=[dij] of the problem. A set of features can be defined by

considering all possible undirected edges eij ( i = 1..N, j = i+1..N, i ≠ j ) that may

appear in a tour with feature costs given by the edge lengths dij. Each edge eij

connecting cities i and city j is attached a penalty pij initially set to 0 which is

increased by GLS during search. These edge penalties can be arranged in a symmetric

penalty matrix P=[pij]. As mentioned in section 2.5, penalties have to be combined

with the problem’s cost function to form the augmented cost function which is

minimised by local search. This can be done by considering the auxiliary distance

matrix:

 Eq. 3.2                                           D′ = D + λ⋅P = [dij + λ⋅pij] .

Local search must use D′ instead of D in move evaluations. GLS modifies P and

(through that) D′ whenever local search reaches a local minimum. The edges

penalised in a local minimum are selected according to the utility function (Eq. 2.5),

which for the TSP takes the form:
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3.4.2 Combining GLS with TSP Local Search Procedures

GLS as depicted in Figure 2.1 makes no assumptions about the internal mechanisms

of local search and therefore can be combined with any local search algorithm for the

problem, no matter how complex this algorithm is.

The TSP local searches of section 3.3.1 to be integrated with GLS need only to be

implemented as procedures which, provided with a starting tour, return a locally

optimal tour with respect to the neighbourhood considered. The distance matrix used

by local search is the auxiliary matrix D′ described in the last section. A reference to

the matrix D is still needed to enable the detection of better solutions whenever moves

are executed and new solutions are visited. There is no need to keep track of the value

of the augmented cost function since local search heuristics make move evaluations

using cost differences rather than re-computing the cost function from scratch.

Interfacing GLS with fast local searches for the TSP requires a little more effort (see

also Figure 2.2). In particular, each time we penalise an edge in GLS, the

sub-neighbourhoods corresponding to the cities at the ends of this edge are activated

(i.e. bits set to 1). After the first local minimum, calls to fast local search start by

examining only a number of sub-neighbourhoods and in particular those which

associate to the edges just penalised. Activation may spread to a limited number of

other sub-neighbourhoods because of the moves performed though, in general, local
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search quickly settles in a new local minimum. This dramatically speeds up GLS,

forcing local search to focus on edge exchanges that remove penalised edges instead

of evaluating all possible moves.

3.4.3 How GLS Works on the TSP

Let us now give an overview of the way GLS works on the TSP. Starting from an

arbitrary solution, local search is invoked to find a local minimum. GLS penalises one

or more of the edges appearing in the local minimum, using the utility function Eq. 3.3

to select them. After the penalties have been increased, local search is restarted from

the last local minimum to search for a new local minimum. If we are using fast local

search then the sub-neighbourhoods (i.e. cities) at the ends of the edges penalised need

also to be activated. When a new local minimum is found or local search cannot

escape from the current local minimum, penalties are increased again and so forth.

The GLS algorithm constantly attempts to remove edges appearing in local minima by

penalising them. The effort invested by GLS to remove an edge depends on the edge

length. The longer the edge, the greater the effort put in by GLS. The effect of this

effort depends on the regularisation parameter λ of GLS. A high λ causes GLS

decisions to be in full control of local search, overriding any local gradient

information while a low λ causes GLS to escape from local minima with great

difficulty, requiring many penalty cycles before a move is executed. However, there is

always a range of values for λ for which the moves selected aim at the combined

objective to improve the solution (taking into account the gradient) and also remove

the penalised edges (taking into account the GLS decisions). If longer edges persist in

appearing in solutions despite the penalties, the algorithm will diversify its choices,

trying to remove shorter edges too.
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As the penalties build up for both bad and good edges frequently appearing in local

minima, the algorithm starts exploring new regions in the search space, incorporating

edges not previously seen and therefore not penalised. The speed of this “continuous”

diversification of search is controlled by the parameter λ. A low λ slows down the

diversification process, allowing the algorithm to spend more time in the current area

before it is forced by the penalties to explore other areas. Conversely, a high λ speeds

up diversification, at the expense of intensification.

From another viewpoint, GLS realises a “selective” diversification which pursues

many more choices for long edges than short edges by penalising the former many

more times than the later. This selective diversification achieves the goal of

distributing the search effort according to prior information as expressed by the edge

lengths. Selective diversification is smoothly combined with the goal of intensifying

search by setting λ to a value low enough to allow the local search gradients to

influence the course of local search. Escaping from local minima comes at no expense

because of the penalties but alone without the goal of distributing the search effort, as

implemented by the selective penalty modification mechanism, is not enough to

produce high quality solutions.

3.5 Evaluation of GLS in the TSP

To investigate the behaviour of GLS on the TSP, we conducted a series of

experiments. The results presented in subsequent sections attempt to provide a

comprehensive picture of the performance of GLS on the TSP. First, we examine the

combination of GLS with 2-Opt, the simplest of the TSP heuristics. The benefits from

using fast local search instead of best improvement local search are clearly

demonstrated, along with the ability of GLS to find high quality solutions in small to
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medium size problems. These results for GLS are compared with results for Simulated

Annealing and Tabu Search when these techniques use the 2-Opt heuristic.

From there on, we focus on efficient techniques for the TSP based on GLS. The

different combinations of GLS with the local search procedures of Table 3.1 are

examined and conclusions are drawn on the relation between GLS and local search.

Efficient GLS variants are compared with methods based on the Lin-Kernighan

algorithm (known to be the best heuristic techniques for the TSP).

3.5.1 Experimental Setting

In the experiments conducted, we used problems from the publicly available library of

TSP problems, TSPLIB [Rei91]. Most of the instances included in TSPLIB have

already been solved to optimality and they have been used in many papers in the TSP

literature.

For each algorithm evaluated, ten runs from different random initial solutions were

performed and the various performance measures (solution quality, running time etc.)

were averaged. The solution quality was measured by the percentage excess above the

best known solution (or optimal solution if known), as given by the formula:

Eq. 3.5                     excess = ×
solution cost -  best known solution cost

best known solution cost
100 .

Unless otherwise stated, all experiments were conducted on DEC Alpha 3000/600

machines (175 MHz) with algorithms implemented in GNU C++.

3.5.2 Regularisation Parameter λλ
The only parameter of GLS which requires tuning is the regularisation parameter λ.

The GLS algorithm performed well for a relatively wide range of values when we
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tested it on problems from TSPLIB with either one of the 2-Opt, 3-Opt or LK

heuristics. Experiments showed that GLS is quite tolerant to the choice of λ as long as

λ is equal to a fraction of the average edge length in good solutions (e.g. local

minima). These findings were expressed by the following equation for calculating λ:

Eq. 3.6                                             λ = ⋅a g
N

( )local minimum
 ,

where g(local minimum) is the cost of a local minimum tour produced by local search

(e.g. first local minimum before penalties are applied) and N the number of cities in

the instance. Eq. 3.6 introduces a parameter a which, although instance-dependent,

results in good GLS performance for values in the more manageable range (0,1].

Experimenting with a, we found that it depends not only on the instance but also on

the local search heuristic used. In general, there is an inverse relation between a and

local search effectiveness. Not-so-effective local search heuristics such as 2-Opt

require higher a values than more effective heuristics such as 3-Opt and LK. This is

because the amount of penalty needed to escape from local minima decreases as the

effectiveness of the heuristic increases and therefore lower values for a have to be

used to allow the local gradients to affect the GLS decisions. For 2-Opt, 3-Opt and

LK, the following ranges for a generated high quality solutions in the TSPLIB

problems.

The lower bounds of these intervals represent typical values for a that enable GLS to

escape from local minima at a tolerable rate. If values less than the lower bounds are

used, then GLS requires too many penalty cycles to escape from local minima. In

Heuristic Suggested range for a
2-Opt 1/8 ≤ a ≤ ½
3-Opt 1/10 ≤ a ≤ ¼

LK 1/12 ≤ a ≤ 1/6

Table 3.2 Suggested ranges for parameter a when GLS is combined with different TSP heuristics.



66

general, the lower bounds depend on the local search heuristic used and also the

structure of the landscape (i.e. depth of local minima). On the other hand, the upper

bounds give a good indication of the maximum values for a that can still produce

good solutions. If values greater than the upper bounds are used then the algorithm is

exhibiting excessive bias towards removing long edges and failing to reach high

quality local minima. In general, the upper bounds also depend on the local search

heuristic used but they are mainly affected by the quality of the information contained

in the feature costs (i.e. how accurate is the assumption that long edges are preferable

over short edges in the particular instance).

3.6 Guided Local Search and 2-Opt

In this section, we look into the combination of GLS with the simple 2-Opt heuristic.

More specifically, we present results for GLS with best improvement 2-Opt local

search (BI-2Opt) and fast 2-Opt local search (FLS-2Opt). The set of problems used in

the experiments consisted of 28 small to medium size TSPs from 48 to 318 cities all

from TSPLIB. The stopping criterion used was a limit on the number of iterations not

to be exceeded. An iteration for GLS with BI-2Opt was considered one local search

iteration (i.e. complete search of the neighbourhood) and for GLS with FLS-2Opt, a

call to fast local search as in Figure 2.2. The iteration limit for both algorithms was set

to 200,000 iterations. In both cases, we tried to provide the GLS variants with plenty

of resources in order to reach the maximum of their performance.

The exact value of λ used in the runs was manually determined by running a number

of test runs and observing the sequence of solutions generated by the algorithm. A

well-tuned algorithm generates a smooth sequence of gradually improving solutions.

A not so well tuned algorithm either progresses very slowly (λ is lower than it should
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be) or very quickly finds no more than a handful of good local minima (λ is higher

than it should be). The values for λ determined in this way were corresponding to

values for a around 0.3. Ten runs from different random solutions were performed on

each instance included in the set of problems and the various performance measures

(excess, running time to reach the best solution etc.) were averaged. The results

obtained are presented in Table 3.3.

Both GLS variants found solutions with cost equal to the optimal cost in the majority

of runs. GLS with BI-2Opt failed to find the optimal solutions (as reported by Reinelt

in [Rei91] and also [Rei94]) in only 15 out of the total 280 runs. From another

Problem GLS with BI-2Opt GLS with FLS-2Opt
optimal runs
out of 10

Mean
Excess (%)

Mean CPU
Time (sec)

optimal runs
out of 10

Mean
Excess(%)

Mean CPU
Time (sec)

att48 10 0.0 0.77 10 0.0 0.4
eil51 10 0.0 1.62 10 0.0 0.46
st70 10 0.0 7.68 10 0.0 1.2
eil76 10 0.0 3.83 10 0.0 0.97
pr76 10 0.0 15.1 10 0.0 3.01
gr96 10 0.0 16.48 10 0.0 2.26
kroA100 10 0.0 11.27 10 0.0 1.25
kroB100 10 0.0 16.36 10 0.0 2.46
kroC100 10 0.0 12.2 10 0.0 0.74
kroD100 10 0.0 12.94 10 0.0 1.78
kroE100 10 0.0 35.68 10 0.0 2.46
rd100 10 0.0 10.75 10 0.0 2.74
eil101 10 0.0 19.49 10 0.0 2.37
lin105 10 0.0 17.46 10 0.0 2.06
pr107 10 0.0 150.28 10 0.0 5.41
pr124 10 0.0 22.47 10 0.0 1.56
bier127 10 0.0 254.36 10 0.0 24.67
pr136 9 0.0009 416.78 10 0.0 32.16
gr137 10 0.0 66.54 10 0.0 7.82
pr144 10 0.0 52.84 10 0.0 6.95
kroA150 10 0.0 257.06 10 0.0 7.03
kroB150 10 0.0 289.02 10 0.0 44.85
u159 10 0.0 74.35 10 0.0 6.9
rat195 8 0.01 525.48 10 0.0 55.15
d198 0 0.08 1998.37 0 0.05 353.97
kroA200 10 0.0 614.6 10 0.0 50.16
kroB200 10 0.0 665.3 10 0.0 61.79
lin318 8 0.01 4484.4 9 0.005 346.44

Table 3.3 Performance of 2-Opt based variants of GLS on small to medium size TSP instances.
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viewpoint, the algorithm was successful in finding the optimal solution in 94.6% of

the runs. Ten out of the 14 failures referred to a single instance namely d198.

However, the solutions found for d198 were of high quality and on average within

0.08% of optimality.

GLS with FLS-2Opt found the optimal solutions in 3 more runs than GLS with

BI-2Opt, missing the optimal solution in only 11 out of the 280 runs (96.07% success

rate). In particular, the algorithm missed only once the optimal solution for lin318 but

still found no optimal solution for d198 which proved to be a relatively ‘hard’

problem for both variants. GLS using fast local search was on average ten times faster

than GLS using best improvement local search and that without compromising on

solution quality. In the worst case (att48), it was two times faster while in the best

case (kroA150) it was thirty seven times faster. Remarkably, GLS with fast local

search was able in most problems to find a solution with cost equal to the optimum

(already known) in less than 10 seconds of CPU time on the DEC Alpha 3000/600

machines used.

The results presented in this section clearly demonstrate the ability of GLS even when

combined with 2-Opt the simplest of TSP heuristics to find consistently the optimal

solutions for small to medium size TSPs. The use of fast local search introduces

substantial savings in running times without compromising in solution quality.

3.6.1 Comparison with General Methods for the TSP

The above performance of GLS is remarkable considering that GLS is not an exact

method and that in this case it only used the short-sighted 2-Opt heuristic. Searching

the related TSP literature, we could not find any other approximation methods that use

only the simple 2-Opt move and consistently find optimal solutions for problems up to
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318 cities. Only the Iterated Lin-Kernighan algorithm and its variants [Joh90, JM95,

JBMR96] share the same consistency in reaching the optimal solutions. These

algorithms will be considered later in this chapter.

A meaningful comparison that can be made is between GLS using 2-Opt and other

general methods that also use the same heuristic. For that purpose, we implemented

simulated annealing [KGV83] and a tabu search variant for the TSP suggested by

Knox [Kno94].

3.6.2 Simulated Annealing

The Simulated Annealing (SA) algorithm implemented for the TSP was the one

described by Johnson in [Joh90] and uses geometric cooling schedules (see section

1.4.1). The algorithm generates random 2-Opt moves. If a move improves the cost of

the current solution then it is always accepted. Moves that do not improve the cost of

the current solution are accepted with probability:

e T
−∆

where ∆ is the difference in cost due to the move and T is the current temperature. In

the final runs, we started the algorithm from a relatively high temperature (around

50% of moves were accepted). At each temperature level the algorithm was allowed to

perform a constant number of trials to reach equilibrium. After reaching equilibrium,

the temperature was multiplied by the cooling rate a which was set to a high value (a

= 0.9) . To stop the algorithm, we used the scheme with the counter described in

[JAMS89].
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3.6.3 Tabu Search

The tabu search variant implemented was the one proposed by Knox [Kno94] using a

combination of tabu restrictions and aspiration level criteria. The method is briefly

described in here.

Tabu search performs best improvement local search selecting the best move in the

neighbourhood but only amongst those not characterised as tabu. Determining the

tabu status of a move is very important in tabu search and holds the key for the

development of efficient recency-based memory (see section 1.5).

In this tabu search variant for the TSP, a 2-Opt move is classified as tabu only if both

added edges of the exchange are on the tabu list. If one or both of the added edges are

not on the tabu list, then the candidate move is not classified as tabu. Updating the

tabu list involves placing the deleted edges of the 2-Opt exchanges performed on the

list. If the list is full, the oldest elements of the list are replaced by the new deleted

edge information.

In order for a 2-Opt exchange to override tabu status, both added edges of the

exchange must pass the aspiration test. An individual edge passes the aspiration test if

the new tour resulting from the candidate exchange is better than the aspiration values

associated with the edge. The aspiration values of edges are the tour cost which exists

prior to making the candidate 2-Opt move. Only edges deleted by the exchanges

performed have their values updated.

For the experiments reported here, the tabu list size was set to 3N (where N is the

number of cities in the problem) as suggested by Knox [Kno94]. Tabu search was

allowed to run for 200,000 iterations which is equivalent in terms of number of moves

evaluated to the number of iterations GLS with BI-2Opt was given on the same

instances.
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3.6.4 Simulated Annealing and Tabu Search Compared with GLS

Simulated annealing and tabu search were tested on 8 instances from the greater set of

28 instances mentioned above. The results were averaged as with GLS. Table 3.4

illustrates the results for simulated annealing and tabu search compared with those for

GLS with FLS-2Opt on the same instances. Results are also contrasted with the best

solution found by repeating BI-2Opt starting from random tours until a total of

200,000 local search iterations were completed.

As we can see in Table 3.4, the superiority of GLS over the tabu search variant and

simulated annealing is evident. The tabu search variant found easily the optimal

solutions for small problems and it scaled well for larger problems. However, it was

many times slower than GLS and moreover failed to reach the solution quality of GLS

in the larger problems. Simulated annealing had a consistent behaviour finding good

solutions for all problems but failed to reach the optimal solutions in all but 3 runs.

All three meta-heuristics significantly improved over the performance of repeated

2-Opt.

Problem
Name

GLS with FLS-2Opt Simulated Annealing Tabu Search Repeated BI-2Opt
(200,000 iterations)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

Mean
Excess
(%)

Mean
CPU
Time
(sec)

eil51 0.0 0.46 0.73 6.34 0.0 1.14 0.23 42.4
eil76 0.0 0.97 1.21 18.0 0.0 5.24 1.85 153.45
eil101 0.0 2.37 1.76 33.29 0.0 61.41 3.97 319.15
kroA100 0.0 1.25 0.42 37.36 0.0 21.34 0.34 706.35
kroC100 0.0 0.74 0.80 36.58 0.25 4.80 0.33 1301.98
kroA150 0.0 7.03 1.86 103.32 0.03 413.06 1.41 3290.95
kroA200 0.0 50.16 1.04 229.38 0.72 776.93 1.7 731.1
lin318 0.005 346.44 1.34 829.46 1.31 2672.80 3.11 9771.28

Table 3.4 GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances.
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3.7 Efficient GLS Variants for the TSP

In order to study the combinations of GLS with higher order heuristics such as 3-Opt

and LK, a library of TSP local search procedures was developed in C++. The library

comprises all local search procedures of Table 3.1 and allows combinations of GLS

with any one of these procedures. Furthermore, a number of approximations (not used

in the GLS of section 3.6) are adopted which further reduce the computation times of

local search and GLS as reported in section 3.6. In the rest of the chapter, we will

examine and report results for these efficient variants of GLS.

The most significant approximation introduced is the use of a pre-processing stage

which finds and sorts by distance the 20 nearest neighbours of each city in the

instance. 2-Opt, 3-Opt and LK were considering in exchanges only edges to these 20

nearest neighbours (see also [Rei94, JM95]). Each time the penalty was increased for

an edge, the nearest neighbour lists of the cities at the ends of the edge were reordered

though no new neighbours were introduced.

To reduce the computation times required by 3-Opt, 3-Opt was implemented as two

locality searches each of which looks for a “short enough” edge to extend further the

exchange (see [Ben92] for details). The LK implementation was exactly as proposed

by Lin and Kernighan [LK73] incorporating their lookahead and backtracking

suggestions (i.e. backtracking at the first two levels of the sequence generation,

considering at each step only the five smallest and available candidate edges that can

be added to the tour and taking into account in the selection of the edges to be added

the length of the edges to be deleted by these additions).

The library is portable to most UNIX machines though experiments reported in here

were solely performed on DEC Alpha workstations 3000/600 (175 MHz) using a

library executable generated by the GNU C++ compiler.
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The set of problems used in the evaluation of the GLS variants included 20 problems

from 48 to 1002 cities all from TSPLIB. For each variant tested, 10 runs were

performed and 5 minutes of CPU time were allocated to each algorithm in each run.

To measure the success of the variants, we considered the percentage excess above the

optimal solution as in Eq. 3.5. The normalised lambda parameter a was provided as

input to the program and λ was determined after the first local minimum using Eq.

3.6. For GLS variants using 2-Opt, a was set to a = 1/6 while the GLS variants based

on 3-Opt used the slightly lower value a = 1/8 and the LK variants the even lower

value a = 1/10. The full set of results for the various combinations of GLS with local

search can be found in Appendix A. Next, we focus on selected results from this set.

3.7.1 Results for GLS with First Improvement Local Search

Figure 3.4 graphically illustrates the results for the first improvement versions of

2-Opt, 3-Opt and LK when combined with GLS. In this figure, we see that the
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combination of GLS with FI-3Opt and FI-LK significantly improves over the

performance of GLS with FI-2Opt especially when applied to large problems. FI-LK

combined with GLS achieved the best performance amongst the three methods tested.

3.7.2 Results for GLS with Fast Local Search

Figure 3.5 graphically illustrates the results obtained for GLS when combined with the

fast local search variants of 2-Opt, 3-Opt and LK. GLS with FI-LK (found to be best

amongst the first improvement versions of GLS) is also displayed in the figure as a

point of reference. In this figure, we can see that the fast local search variants of GLS

are much better than the best of the first improvement local search variants (i.e.

GLS-FI-LK). Another far more important observation is that for fast local search the

2-Opt variant is better than the 3-Opt variant which in turn is better than the LK

variant. This is exactly the opposite order than one would have expected. One possible

explanation can be derived by considering the strength of GLS. More specifically,

FLS-2Opt allows GLS to perform many more penalty cycles in the time given than its
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FLS-3Opt or FLS-LK counterparts. More GLS penalty cycles seem to increase

efficiency at a level which outweighs the benefits from using a more sophisticated

local search procedure such as 3-Opt or LK.

The remarkable effects of GLS on local search are further demonstrated in Figure 3.6

where GLS with FLS-2Opt is compared against Repeated FLS-2Opt and Repeated

FI-LK. In Repeated FLS-2Opt and Repeated FI-LK, local search is simply restarted

from a random solution after a local minimum and the best solution found over the

many runs is returned. These two algorithms along with other versions of repeated

local search were tested under the same settings with the GLS variants. Appendix A

includes the full set of results for repeated local search. In Figure 3.6, we can see the

huge improvement in the basic 2-Opt heuristic when this is combined with GLS. GLS

is the only technique known to us which when applied to 2-Opt can outperform the

Repeated LK algorithm (and that without requiring excessive amounts of CPU time)

as illustrated in the same figure.
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3.8 Comparison with Specialised TSP algorithms

3.8.1 Iterated Lin-Kernighan

The Iterated Lin-Kernighan algorithm (not to be confused with Repeated LK) has

been proposed by Johnson [Joh90] and it is considered to be one of the best if not the

best heuristic algorithm for the TSP [JM95]. Iterated LK uses LK to obtain a first local

minimum. To improve this local minimum, the algorithm examines other local

minimum tours “near” the current local minimum. To generate these tours, Iterated

LK first applies a random and unbiased non-sequential 4-Opt exchange (see Figure

3.1) to the current local minimum and then optimises this 4-Opt neighbour using the

LK algorithm. If the tour obtained by the process (i.e. random 4-Opt followed by LK)

is better than the current local minimum then Iterated LK makes this tour the current

local minimum and continues from there using the same neighbour generation

process. Otherwise, the current local minimum remains as it is and further random

4-Opt moves are tried. The algorithm stops when a stopping criterion based either on

the number of iterations or computation time is satisfied. Figure 3.7 contains the

original description of the algorithm as given in [Joh90].

1. Generate a random tour T.

2. Do the following for some prespecified  number M of iterations:

2.1. Perform an (unbiased) random 4-Opt move on T, obtaining T′.

2.2. Run Lin-Kernighan on T′, obtaining T″.

2.3. If length(T″) ≤ length (T′), set T = T″.

3. Return T′.

Figure 3.7 Iterated Lin-Kernighan as described by Johnson in [Joh90]
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The random 4-Opt exchange performed by Iterated LK is mentioned in the literature

as the “double-bridge” move and plays a diversification role for the search process,

trying to propel the algorithm to a different area of the search space preserving at the

same time large parts of the structure of the current local minimum. Martin et al.

[MOF92] describe this action as a “kick” and show that can be also used with 3-Opt in

the place of LK. The same authors also suggest the combination of the method with

Simulated Annealing (Long Markov Chains method). Martin and Otto [MO96] further

demonstrate the efficiency of this last algorithm on the TSP and also the Graph

Partitioning problem though they admit that simulated annealing does not significantly

improve the method for TSP problems up to 783 cities. Finally, Johnson and

McGeoch [JM95] review Iterated LK and its variants and provide results for both

structured and random TSP instances.

Iterated LK or Iterated 3-Opt share some of the principles of GLS in the sense that

they produce a sequence of diversified local minima though this is conducted in a

random rather than a systematic way. Furthermore, iterated local search accepts the

new solution, produced by the 4-Opt exchange and the subsequent LK or 3-Opt

optimisation, only if it improves over the current local minimum (or it is slightly

worse in the case of Large Markov Chains Method which uses simulated annealing) .

Iterated LK outperforms Repeated LK previously thought to be the “champion” of

TSP heuristics and also long simulated annealing runs [MO96]. More recent

experiments show that even sophisticated tabu search variants of LK cannot improve

over Iterated LK [ZD95] which rightly deserves the title of the “champion” of TSP

meta-heuristics.

To compare Iterated LK and its other variants such as Iterated 3-Opt with GLS, we

extended our C++ library mentioned above to allow the iterated local search scheme
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to be combined with the local search procedures of Table 3.1 included in the library.

In particular, a random and unbiased Double-Bridge (DB) move was performed in a

local minimum. The solution obtained was optimised by either one of the procedures

of Table 3.1 before compared against the current local minimum. The new solution

was accepted only if it improved over the current local minimum. To combine iterated

local search with fast local search procedures, we activated the sub-neighbourhoods

corresponding to the cities at the ends of the edges involved in the Double-Bridge

move (see also [CMMR96]). The above extensions to the library made available a

general meta-heuristic method applicable to all the local search procedures of Table

3.1. We will refer to this method as the Double-Bridge (DB) meta-heuristic.

We tested all the possible combinations of the DB meta-heuristic with the local

searches of Table 3.1 (except for BI-2Opt) on the set of 20 problems used to test the

GLS combinations. The same time limit (5 minutes of CPU time on DEC Alpha

3000/600 machines) was used and ten runs were performed on each instance in the

set. The percentage excess was averaged in each problem for each DB variant. The

best combination proved to be that of the DB heuristic with FLS-LK which

outperformed DB with FI-LK (this last algorithm is roughly the same with the original

method proposed by Johnson [Joh90]). The results for the various combinations of

DB with local search are included in Appendix A.
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Table 3.5 presents the results obtained for DB with FLS-LK and DB with FI-LK

compared with those for GLS with FLS-2Opt found to be the best GLS variant. As a

point of reference, we also provide results for FI-LK when repeated from random

starting points and for the same amount of time. As we can see in Table 3.5, GLS with

FLS-2Opt is better on average than both DB with FLS-LK and DB with FI-LK. The

solution quality improvement over these methods although small it is very significant

given that these methods are amongst the best heuristic techniques for the TSP. Note

here that GLS with FLS-2Opt is by far a simpler method requiring only a fraction of

the programming effort required to develop the DB variants based on LK.

To further test GLS against the DB variants of LK, we used a set of 66 TSPLIB

problems from 48 to 2392 cities but this time we performed longer runs lasting 30

minutes of CPU time each. This amount of time on the DEC Alpha machines used

translates to many hours of CPU time on an average PC where most of these

Problem Mean Excess (%) over 10 runs
GLS with FLS-2Opt DB with FLS-LK DB with FI-LK Repeated FI-LK

att48 0 0 0 0
eil76 0 0 0 0
kroA100 0 0 0 0
bier127 0 0 0 0.0301
kroA150 0 0 0 0.00226
u159 0 0 0 0
kroA200 0 0 0 0.02452
gr202 0 0 0.00921 0.14143
gr229 0.00431 0.00475 0.01412 0.0977
gil262 0.00421 0 0.01682 0.05467
lin318 0.02641 0.24079 0.25578 0.62957
gr431 0.02392 0.22239 0.3327 0.67964
pcb442 0.04431 0.08173 0.06637 0.48525
att532 0.08994 0.08163 0.22502 0.53023
u574 0.14144 0.0924 0.11435 0.73838
rat575 0.09892 0.09745 0.13731 0.80762
gr666 0.20628 0.17587 0.41888 0.83762
u724 0.16822 0.16655 0.35696 0.93367
rat783 0.16125 0.15331 0.24075 1.00045
pr1002 0.62063 0.44633 1.04742 1.5046
Average Excess 0.07949 0.08816 0.16178 0.42488

Table 3.5 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan.
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algorithms are most likely to be utilised. Because of the large number of instances

used and the long time the algorithms were allowed to run, one run was performed on

each instance. The results from the experiments are presented in Table 3.6.

Even in these longer runs, GLS with FLS-2Opt still finds better solutions than the DB

variants of LK. This result is of great significance since it further supports our claim

that the application of GLS on FLS-2Opt successfully converted the method to a

powerful algorithm. As we can see in Table 3.6, the method is able to compete and

even outperform highly specialised heuristic methods for the TSP.

The relative gains from the GLS and also DB meta-heuristic are further illustrated in

Figure 3.8. In this figure, we give the absolute improvement in average solution

quality (i.e. excess above the optimal solution) by the GLS and DB variants over the

corresponding repeated local search variants in the set of 20 problems from TSPLIB.

0.26

1.06

2.96

0.34

1.42

4.85

-0.30

0.33

2.98

0.10

1.49

5.14

-1

0

1

2

3

4

5

6

FI-LK

FI-3O
pt

FI-2O
pt

FLS-LK

FLS-3O
pt

FLS-2O
pt

A
bs

ol
ut

e 
Im

pr
ov

em
en

t =
 

M
ea

n 
Ex

ce
ss

 o
f R

ep
ea

te
d 

Lo
ca

l S
ea

rc
h 

(%
) -

 
M

ea
n 

Ex
ce

ss
 o

f G
LS

 o
r 

D
B 

V
ar

ia
nt

 (%
) DB Improvement

GLS Improvement

Figure 3.8 Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB
problems



81

Problem Excess (%) in one run per instance
GLS with FLS-2Opt DB with FLS-LK DB with FI-LK

att48 0 0 0
eil51 0 0 0
st70 0 0 0
eil76 0 0 0
pr76 0 0 0
gr96 0 0 0
rat99 0 0 0
kroA100 0 0 0
kroB100 0 0 0
kroC100 0 0 0
kroD100 0 0 0
kroE100 0 0 0
rd100 0 0 0
eil101 0 0 0
lin105 0 0 0
pr107 0 0 0
pr124 0 0 0
bier127 0 0 0
pr136 0 0 0
gr137 0 0 0
pr144 0 0 0
kroA150 0 0 0
kroB150 0 0 0
pr152 0.18458 0 0
u159 0 0 0
rat195 0 0 0
d198 0 0 0
kroA200 0 0 0
kroB200 0 0 0
gr202 0 0 0
pr226 0 0 0
gr229 0 0 0
gil262 0 0 0
pr264 0 0 0
pr299 0 0 0
lin318 0 0.27124 0
fl417 0.00843 0.00843 0.42998
gr431 0 0 0.01458
pr439 0.00653 0.04104 0
pcb442 0.01182 0 0
d493 0.02 0.00857 0.09142
att532 0.06501 0 0.04696
ali535 0.02323 0.01433 0.01433
u574 0 0.08129 0.10568
rat575 0.04429 0.08859 0.05906
p654 2.04659 2.27174 0.04619
d657 0.0184 0.0368 0.13289
gr666 0.00612 0.09988 0.20315
u724 0.05727 0.09783 0.04534
rat783 0 0.06814 0.01136
dsj1000 0.31222 0.40289 0.88742
pr1002 0.12315 0.07566 0.11658
u1060 0.05132 0.15663 0.43285
pcb1173 0.14765 0.02461 0.43767
d1291 0.22244 0.63581 1.16139
rl1304 0.20241 0 0.50366
rl1323 0.18542 0.14027 0.22909
fl1400 1.56009 2.58359 3.11025
u1432 0.05295 0.27783 0.30464
d1655 0.40722 0.27846 1.19753
vm1748 0.33219 0.32387 0.75678
u1817 0.57517 0.3916 1.02096
rl1889 0.37279 0.90953 0.52443
u2152 0.61476 0.46379 0.75327
u2319 0.00726 0.25229 0.28729
pr2392 0.35209 0.27458 0.90019
Mean 0.12138 0.15575 0.20947
Standard Deviation 0.33047 0.43627 0.47296

Table 3.6 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan (long runs).
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As shown in Figure 3.8, the DB meta-heuristic is more effective than GLS when

combined with LK. In fact, GLS when combined with FI-LK is even worse than

Repeated FI-LK. This situation dramatically changes for fast local search variants

where GLS is better than DB when combined with the FLS-3Opt or FLS-2Opt local

searches improving the solution quality over repeated local search up to 5.14% in the

case of FLS-2Opt. The overall ranking of all the variants developed in terms of

average excess in the set of 20 TSPLIB problems is given in Figure 3.9. GLS with

FLS-2Opt was found to be best amongst the 18 algorithms tested.
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3.8.2 Genetic Local Search

In an effort to further improve the LK heuristic, Genetic Algorithms recently appeared

which internally use LK for improving offspring solutions generated by crossover

operations. These methods, although of great complexity and therefore of limited

practical use in our opinion, present theoretical interest and they will be potentially

useful when parallel computers became more accessible in the future. An example of

such a technique is the Genetic Local Search algorithm proposed by Freisleben and

Merz [FM96]. This method, in addition to using LK for improving offspring

solutions, uses a mutation operator which performs first an 4-Opt exchange on a

population solution and then runs LK to convert this solution to a local minimum.

Iterated LK mentioned above can be seen as a special case of this method. In [FM96],

results are reported for Genetic Local Search on TSPLIB instances. The authors

consider the results produced by the technique as superior to those published for any

GA approaches known to them and comparable to top quality non-GA heuristic

techniques. Fortunately, the experiments in [FM96] were also conducted on a DEC

Alpha workstation running at 175 MHz. This permits a meaningful comparison

between this GA variant and GLS. We ran GLS-FLS-2Opt on the same instances with

a = 1/6 and for an equal number of times as the GA approach. In Table 3.7, the results

from [FM96] are compared with those we obtained for GLS using FLS-2Opt.

Problem GLS with FLS-2Opt Genetic Local Search

Mean Excess Mean CPU
time (sec)

Mean Excess Mean CPU
time (sec)

eil51 (20 runs) 0% 1.2 0% 6
kroA100 (20 runs) 0% 1.59 0% 11
d198(20 runs) 0% 435 0% 253
att532 (10 runs) 0% 3526 0.05% 6076
rat783 (10 runs) 0% 5232 0.04% 14925

Table 3.7 GLS with FLS-2Opt compared with Genetic Local Search on five TSPLIB instances.
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Except for d198 which is a hard instance for GLS (see results in section 3.6), GLS was

better than the GA approach finding solutions of better quality for att532 and rat783

while running faster between 1.7 to 6.9 times. Note here that the GA is using the best

heuristic for the TSP (i.e. DB followed by LK) while GLS the worst (i.e. 2-Opt).

Another remarkable result which emerged from these experiments was that GLS with

FLS-2Opt can consistently find the optimal solutions for problems att532 and rat783.

As far as we know, optimal solutions to such large problems can be consistently found

only by heuristic methods that are using LK (e.g. Iterated LK or its variant Large-Step

Markov Chains method).

In fact, GLS was able to find the optimal solution in even larger problems. For

example, GLS with FLS-3Opt found the optimal solution for a 2319-city problem

from TSPLIB (u2319) in less than 20 minutes while GLS with FLS-2Opt found the

optimal solution to a 1002-city problem from TSPLIB (pr1002) in 14 hours of CPU

time despite running on Sparcstation 5 workstation which is much slower than the

DEC Alpha machines used in the rest of the experiments.

3.9  Conclusions

In this chapter, the application of GLS to the TSP was examined. The combinations of

GLS with commonly used TSP heuristics were described and evaluated on publicly

available instances of the TSP. GLS with FLS-2Opt was found to be the best GLS

variant for the TSP. The variant was compared and found to be superior to general

search methods such as simulated annealing and tabu search. Furthermore, we

demonstrated that GLS with FLS-2Opt is highly competitive (if not better) than some

of the best specialised algorithms for the TSP such as Iterated Lin-Kernighan and

Genetic Local Search.



85

Nonetheless, experimental results should be treated with care. Experimentation no

matter how elaborate and extensive it may be, it can only give indications of which

algorithms are better than others and that because of the many parameters involved in

the algorithms, differences in implementation, and the limited number of instances

used in experiments.

We can safely conclude that the evidence provided in this chapter is enough to place

GLS amongst what somebody will characterise as efficient and effective methods for

the TSP. Given the simplicity of the algorithm and the ease of tuning (i.e. single

parameter), GLS with FLS-2Opt could be considered as an ideal practical method for

the TSP especially when no programming effort can be devoted in implementing one

of the complex specialised TSP algorithms.
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4. Quadratic Assignment Problem

Chapter 4

Quadratic Assignment Problem

The TSP, examined in the last chapter, is probably the most famous problem in

combinatorial optimisation. Another problem which has also attracted the interest of

researchers for many years is the Quadratic Assignment Problem (QAP). QAP could

be probably listed second after the TSP in the list of the most famous combinatorial

optimisation problems. The application of GLS to the QAP is examined in this

chapter. Problems in GLS arising from the use of features with variable costs are

identified and strategies for resolving them are proposed. Comparison with state of the

art QAP algorithms demonstrates the ability of GLS to compete on equal terms with

these methods and even to outperform them.

4.1 The Problem

Quadratic Assignment Problem (QAP) is one of the most difficult problems in

combinatorial optimisation. The problem can model a variety of applications but it is
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mainly known for its use in facility location problems. For a recent QAP survey, the

reader is referred to Pardalos, Rendl, and Wolkowicz [PRW93]. In the following, we

describe the QAP in its simplest form.

Given a set N = {1, 2, ..., n} and n × n matrices A= [aij] and B = [bkl], the QAP can be

stated as follows:

Eq. 4.1                                                         ( )min ( )p ij p i p j
j

n

i

n

N

A B
∈

==

⋅∑∑
Π

11

where p is a permutation of N and ΠN is the set of all possible permutations. There are

several other equivalent formulations of the problem. In the facility location context,

each permutation represents an assignment of n facilities to n locations. More

specifically, each position i in the permutation represents a location and its contents

p(i) the facility assigned to that location. The matrix A is called the distance matrix

and gives the distance between any two of the locations. The matrix B is called the

flow matrix and gives the flow of materials between any two of the facilities. In this

work, we only consider the Symmetric QAP case for which both the distance and flow

matrices are symmetric.

4.2 Local Search for the QAP

QAP solutions are represented by permutations. A move commonly used for the

problem is simply to exchange the contents of two permutation positions (i.e. swap the

facilities assigned to a pair of locations). A best improvement local search procedure

starts with a random permutation. In every iteration, all possible moves (i.e. swaps)

are evaluated and the best is selected and performed. The algorithm reaches a local

minimum when there is no move which improves further the cost of the current

permutation.
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An efficient update scheme can be used in the QAP which allows evaluation of moves

in constant time. The scheme works only with best improvement local search. Move

values of the first neighbourhood search are stored and updated each time a new

neighbourhood search is performed to take into account changes from the move last

executed (see [BT94] or [Tai95] for details). Move values do not need to be evaluated

from scratch and thus the neighbourhood can be fully searched in roughly O(n2) time

instead of O(n3) required otherwise4. To evaluate moves in constant time, we have to

examine all possible moves in each iteration and have their values updated. Because

of that, the scheme can not be combined with FLS which examines only a number of

moves in each iteration. FLS for the QAP requires O(n) operations to evaluate a move

and therefore O(n3) to evaluate all moves in the neighbourhood. This prevented us

from developing a efficient version of FLS for the QAP and instead we used simple

GLS without neighbourhood reduction.

4.3 Guided Local Search Applied to the QAP

Applying GLS to the QAP is a simple two-stage process of identifying the solution

features to be used and assigning costs to them. A set of features that can be used in

the QAP is the set of all possible assignments of facilities to locations (i.e. location-

facility pairs). This kind of feature is general and can be used in a variety of other

assignment problems where a number of variables are assigned values from finite

domains. In the QAP, there are n2 possible location-facility combinations (features)5.

                                                          

4 To evaluate the change in the cost function Eq. 4.1 caused by a move normally requires O(n) time. Since there
are O(n2) moves to be evaluated, the search of the neighbourhood without the update scheme requires O(n3)
time.

5 Features that detect assignment combinations (i.e. combinations of location-facility pairs) are also possible but
the number of features in this case rises to O(n4) making practically impossible the storage of penalties for
problems of size n>30.
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After deciding on the features, the next step is to assign costs to them. Assignment of

facilities to locations are tightly coupled one to the other because of the problem’s cost

function. For that reason, it is difficult to isolate the effect that particular assignments

have on the solution cost. To deal with this problem, we used variable feature costs

where the cost of a feature is evaluated in the context of the solution it appears in. In

particular, feature costs are evaluated only for the features of the local minimum and

their cost is given by the expression:

Eq. 4.2                                                  ( )( ) ( )c i p i A Bij p i p j
j

n

, ( )= ⋅
=
∑

1

where i is the location and p(i) is the facility assigned to that location in the local

minimum solution. The above expression for the feature cost gives the cost arising

from the flow of materials from facility p(i) to the other facilities with facility p(i)

placed at location i. In a local minimum, features that maximise the utility expression

Eq. 2.5 are penalised and the corresponding location-facility combinations are

avoided.

To determine a range of values for the lambda parameter of GLS, we conducted a

large number of test runs on problems from the publicly available library of QAP

instances, QAPLIB [BKR91]. An equation similar to Eq. 3.6 used in the TSP was also

derived for the QAP case. In particular, we found that GLS performed well for an λ

given by the following parametric equation:

Eq. 4.3                                         λ = ⋅ ≤ ≤a
g

n
a

(
, /

local minimum)
 2 1 5 1

where g(local minimum) is the cost of the first local minimum found during a run and

n the size of the problem. In terms of implementation, the algorithm is given as input
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the parameter a which is used to calculate lambda after the first local minimum and

before the first features are penalised.

4.4 The Issue of Features with Variable Costs

Features with variable costs are a potential problem for GLS. The problem arises

because decisions to penalise features are based on feature costs. If the costs of

features change during search then bad features may become good and vice versa.

Penalties imposed on bad features which turn good at a latter stage may prevent these

features from being used again in the solution.

For instance, let us consider a local minimum solution where facility j is assigned to

location i. If location i is far from the locations of facilities connected with high flows

to facility j then the assignment of facility j to location i is a bad combination. This

results in a high cost for the corresponding feature. GLS will penalise the combination

of location i with facility j and facility j will be assigned elsewhere. Although the

decision is correct in this context, it may prevent local search from assigning facility j

to location i at a later stage in search when the arrangement of all other facilities

makes location i a good choice. The GLS decision based on a single local minimum

solution is incorrectly generalised constraining many other potentially good solutions.

The result is that diversification is triggered prematurely and GLS leaves the good

areas of the search space without thoroughly searching them. To resolve this problem

a number of strategies were explored. After experimentation, three strategies were

identified as the most promising ones.
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4.4.1 Reset Strategy

This strategy is identical to the basic GLS depicted in Figure 2.1 with the exception

that all penalties are reset to 0 every t iterations. By resetting the penalties, GLS can

revisit solutions that include features penalised earlier in the search process. This leads

to an intensification of search in the “good” areas of the search space which

compensates for the unnecessary diversification caused by the variable feature costs.

The drawback of the approach is that GLS looses some of its diversification ability

which drives the algorithm to unexplored regions of the search space when enough

effort is spent in the promising areas. In the following, we will refer to this GLS

variant as Reset-GLS.

4.4.2 Restart Strategy

Instead of resetting the penalties, the algorithm is restarted from a “good” solution

every t iterations. The objective is the same as with Reset-GLS, that is to intensify

search in the “good” areas of the search space. The new starting points are generated

by combining the K best solutions found during search prior to reaching the restart

point, in a way that very much resembles Genetic Algorithm approaches. The

approach is similar to intensification schemes used in the Vehicle Routing Problem by

tabu search methods [RT95] (see section 1.5.3).

In particular, the K best solutions found during search prior to the restart point are

organised in a list which is then sorted by the solution cost. A selection probability is

assigned to each solution depending on its position in the list. In the version of the

procedure implemented, the ten best solutions were used and the probabilities

assigned from best to worst solution were 0.36, 0.18, 0.12, 0.09, 0.07, 0.06, 0.05, 0.04,
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0.02, and 0.01 respectively. New solutions were generated using the following

procedure.

Starting from an empty permutation and scanning the locations from left to right, each

location is assigned the same facility as in a solution pseudo-randomly selected from

the list of the best solutions according to the above probabilities. After all locations

have been assigned facilities, the permutation is again scanned from left to right and

facilities which appear more than once are randomly replaced by the unassigned

facilities. GLS is restarted from the solution generated without resetting the penalties.

To recapitulate, the restart strategy tries to achieve search intensification in the “good”

areas of the search space by restarting the algorithm from a solution which is formed

by combining the best local optima visited up to the restart point. Although variable

feature costs may mislead the algorithm into unpromising areas, the restart strategy

tries to bring the method back to the areas of the good solutions. Moreover, different

search trajectories are tried in these areas after each restart because of the memory of

the algorithm (i.e. penalties) which is not cleared. In the following, we will refer to

this GLS variant as Restart-GLS.

4.4.3 Multiple Feature Sets Strategy

In the QAP, GLS decides which features to penalise using the costs of features as

measured in the context of a particular local minimum. As the algorithm leaves this

local minimum and swaps are performed, feature costs gradually change up to the

point where they have totally different values from those calculated in the local

minimum. In other words, the information used in GLS decisions gradually becomes

invalid after the point these decisions are made. A sensible thing to do is to remove



93

the effects of decisions as soon as the information they were based on becomes

invalid.

In a more global perspective, information which is valid only for a certain period of

time should lead to restrictions of equal duration on local search. When information

becomes invalid or out of context, the restrictions imposed on the basis of this

information should be retracted. Tabu search as originally presented by Glover

[Glo89, Glo90] makes extensive use of this principle. This same principle can be also

used to explain why dynamic tabu lists are preferable over their static counterparts in

many problems [Tai91, LG93]. The former, by varying the duration of restrictions,

match better than the latter the duration for which search history information is valid.

We put to use the above ideas and developed a strategy which overcomes the problem

of variable feature costs in GLS. The strategy uses a tabu list [Glo89] to retract the

effects of decisions made earlier in the search process. More specifically, penalties

increased are decreased after a certain number of penalty increases is performed. The

scheme uses an array of size t where the t most recent features penalised are recorded.

The array is treated as a circular list, adding elements in sequence in positions 1

through t and then starting over at position 1. Each time the penalty of a feature is

increased (by one unit), the feature is inserted in the array and the penalty of the

feature previously stored in the same position is decreased (by one unit).

One problem with this approach is that GLS totally loses its long term memory and

therefore is unable to diversify search. This is the opposite problem from that with the

Reset-GLS and Restart-GLS variants which either reset long-term memory after a

relatively large number of iterations (Reset-GLS) or do not reset it at all (Restart-

GLS). A simple way to work around the problem is to introduce a second set of

features identical to the first feature set. This feature set is to undertake the task of
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long term diversification by exploiting search history information that is the local

minima visited.

Penalties for this second set are neither reset nor decreased but only increased as in the

basic GLS providing the long-term memory needed to drive search to new regions.

Moreover, features costs are considered constant and equal to 1.0 such that the search

effort is uniformly distributed amongst the features in the set.

GLS works on the two feature sets independently and in parallel. This merely means

that in a local minimum both sets are examined and the features with the highest

utility value in each set are penalised. Additionally, two different regularisation

parameters λ1 and λ2 are used, one for each feature set to allow appropriate balancing

of short-term and long-term penalties. In implementation terms, two parameters a1 and

a2 are fed as inputs to the algorithm and the calculation of λ1 and λ2 takes place after

the first local minimum using Eq. 4.3.

In the penalty incrementation procedure of GLS for the second set (i.e. long-term

penalties), ties amongst features are frequent especially at the beginning of search

because of the equal feature costs. In order to avoid penalising too many features, ties

are broken deterministically and the first feature found to maximise the utility function

is penalised. Experimentation with random tie-breaking strategies showed no

improvement in performance.

Summarising, the multiple feature sets strategy uses two identical feature sets but with

different feature costs and with penalties of different duration to accomplish the

objectives of intensification and diversification of search. The first set with variable

feature costs is utilised to impose short-term penalties for the purposes of

intensification. The second set with constant feature costs is utilised to impose

long-term penalties for the purposes of diversification. Two independent GLS
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processes working on these sets are used which, when combined, achieve the overall

goal of the distribution of search effort according to promise. The separation of

intensification and diversification became necessary in this case because the

information used to achieve each of these two sub-goals is valid for different periods

of time. In the following, we will refer to this GLS variant as Multiple-GLS.

4.5 Experimental Evaluation of Basic GLS and its Variants

We conducted many experiments in order to develop the basic GLS and the various

strategies for resolving the problem with the variable feature costs. Problems included

in QAPLIB [BKR91] were used in the experiments. A typical value for a which

worked well for most problems tested and all variants was a = 0.5 (a1 = 0.5 in the case

of Multiple-GLS). In addition to that, we found that the a2 parameter used only in

Multiple-GLS for the second feature set needed to be smaller than the a1 used for the

first feature set. A value a2 = 0.25 combined very well with the value a1 = 0.5.

For the t parameter required by all three GLS variants, multiples of the problem size n

were tried. For Reset-GLS and Restart-GLS large values performed better. In

particular, a value t = 200n performed well for Reset-GLS while the value t = 100n

was a good choice for Restart-GLS. Multiple-GLS required much lower values for t.

This is because the parameter serves a different purpose in this case (i.e. sets the

duration of the short-term penalties). A range of values for t which resulted in good

performance for Multiple-GLS was n ≤ t ≤ 10n. The value t = 4n was used to generate

all the results reported in this chapter.

The results presented in this section refer to a set of ten QAP instances of sizes from

15 to 40, all from QAPLIB. The set is a mixture of problems of different nature and

size intended to test the basic GLS and its variants on different types of flow and
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distance matrices. For each algorithm, ten runs were performed on each instance,

starting from random solutions. The algorithms were allowed to run for 100,000

iterations (i.e. full neighbourhood searches) or until a solution with cost equal or less

than the best known solution6 was found. Repeated local search was also implemented

to give a point of reference for measuring the success of algorithms. This last

algorithm was simply restarting local search after a local minimum.

A run was characterised as successful if it resulted in the best known solution. The

solution quality was measured in per cent excess above the best known solution (see

Eq. 3.5). Table 4.1 illustrates the results obtained.

The results clearly demonstrate that basic GLS is better than repeated local search.

The algorithm finds the best known solution in 66% of the runs, twice the success rate

of local search without GLS. The strategies for resolving the problem of variable

feature costs had a varied success. Reset-GLS, although improved over basic GLS in

terms of successful runs, had a worse mean solution quality. This can be attributed to

                                                          

6 Exact methods generally find it difficult to solve QAP problems of size greater than 20. QAPLIB includes many
instances with size greater than 20 and therefore out of range for exact methods. These problems have been

Problem
Name

best
known
solution

Basic GLS
a = 0.5

Reset-GLS
a = 0.5,
t = 200n

Restart-GLS
a = 0.5,
t = 100n

Multiple-GLS
a1 = 0.5,
a2 = 0.25,
t = 4n.

Repeated
Local Search

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

nug15 1150 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
nug20 2570 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
rou20 725522 5 (0.022) 8 (0.002) 7 (0.015) 10 (0) 4 (0.055)
nug30 6124 10 (0) 10 (0) 9 (0.007) 10 (0) 2 (0.31)
tho30 149936 9 (0.004) 10 (0) 8 (0.046) 10 (0) 1 (0.355)
kra30a 88900 10 (0) 10 (0) 10 (0) 10 (0) 3 (0.966)
kra30b 91420 4 (0.056) 7 (0.023) 5 (0.049) 8 (0.015) 0 (0.163)
ste36a 9526 7 (0.069) 6 (0.086) 5 (0.206) 9 (0.01) 0 (1.148)
ste36b 15852 1 (1.156) 4 (2.324) 8 (0.343) 10 (0) 3 (0.574)
tho40 240516 0 (0.169) 0 (0.076) 0 (0.142) 0 (0.051) 0 (0.849)
Total successes 66/100 75/100 72/100 87/100 33/100
Mean solution quality 0.1476% 0.2511% 0.0808% 0.0076% 0.442%

Table 4.1 Comparison of GLS variants for the QAP.
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the inferior diversification strategy because of the penalties being reset. On the other

hand, Restart-GLS had fewer successful runs than Reset-GLS, though significantly

improved over basic GLS’s mean solution quality.

The sophisticated Multiple-GLS strategy paid off finding the best known solution in

87% of the runs. Moreover, the Multiple-GLS strategy achieved a remarkable mean

excess of 0.0076% unmatched by any of the other algorithms tested. Much of this

success can be attributed to the second feature set of Multiple-GLS responsible for

diversification. In fact, we performed experiments with no short-term penalties (i.e. a1

= 0). For a2 = 0.5, the algorithm was still able to show a very good performance,

finding the optimal solution in 82% of the runs with a mean excess of 0.0306%.

Lower and higher values for a2 resulted in slightly worse performance. This suggests

another strategy for overcoming the problem of features with variable feature costs

that is to set all feature costs to the same value (i.e. use only the second feature set of

Multiple-GLS). However, this strategy could be improved further by using short-term

penalties based on variable costs to play the crucial refinement role needed in order

for the algorithm to reach a performance such as that presented in Table 4.1.

4.6 Efficient Heuristic Methods for the QAP

Efficient heuristic methods for the QAP are based on tabu search. Two very successful

tabu search methods for the QAP are Robust Taboo Search (Ro-TS) due to Taillard

[Tai91] and Reactive Tabu Search (RTS) due to Battiti and Tecchiolli [BT94]. Other

works applying tabu search to the QAP not examined here include Skorin-Kapon

[Sko90] and Chakrapani and Skorin-Kapov [CS93] to name but two. Moreover, the

                                                                                                                                                                     

tackled in the past by many approximation methods and very good solutions are already known for them.
Whether these solutions are also optimal is an open question.
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Genetic Hybrids (GH) method due to Fleurent and Ferland [FF94] which found the

best known solutions for many of the large problems in QAPLIB is based on Ro-TS.

In this case, Ro-TS is used as the mutation operator which improves solutions

produced by GH’s crossover operator.

We compared GLS with Ro-TS and RTS and also GH. Before proceeding to examine

these results. We briefly describe Ro-TS and RTS. For a description of GH the reader

can refer to the original paper by Fleurent and Ferland [FF94] or to Taillard’s

excellent review and comparison of Ro-TS, RTS and GH on both symmetric and

asymmetric QAPs [Tai95].

4.6.1 Robust Taboo Search

Robust Taboo Search uses the same local search procedure as GLS (see section 4.2).

Additionally, tabu restrictions are imposed which exclude specific moves from being

selected. A move is non admissible (i.e. tabu) if at least one of the following

conditions is satisfied (u and t are the parameters of the algorithm) [Tai91, GTW93,

Tai95]:

• if during the last u iterations, a solution had facility i placed at location r and

facility j placed at location s then a move which places both i at location r and j at

location s again is forbidden (unless this move results in a new best solution).

• if the number of iterations performed is greater than t and facility i has never been

at location r during the last t iterations then a move which does not place facility i

at location r is forbidden.
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The parameter u changes during search taking random values in the range 0.9n < u <

1.1n. This leads to a dynamic tabu list strategy [GTW93, GL93]. A good range of

values for parameter t is 2n2 ≤ t ≤ 5n2 [Tai95].

The short-term tabu restrictions based on parameter u prevent the reversal of moves

previously executed, enabling the algorithm to escape from local minima and at the

same time intensify search in the “good” areas of the search space. On the other hand,

tabu restrictions using parameter t aim to diversify search in the long term forcing it to

enter new regions of the search space. This is achieved by incorporating in the

solution, location-facility combinations not visited in the near past. The two objectives

of the algorithm are the same as the objectives of Multiple-GLS, though different

means are used to accomplish them.

For our experiments, we implemented Ro-TS in C++. The parameter u was

dynamically changing as described above while the parameter t was set to 3.5n2 which

is in the middle of the range suggested by the author.

4.6.2 Reactive Tabu Search

Reactive Tabu Search uses the same short-term memory as Ro-TS though the choice

of parameter u is different. The parameter u is dynamically controlled using a simple

feedback mechanism. In particular, if the search returns to a solution already visited

then the value of u is increased to force local search out of the domain of attraction of

the current local minimum. On the other hand, if u is not changed for a number of

iterations then it is decreased.

On the diversification front, if solutions are often visited then a number of random

exchanges is made to force local search to explore new regions. All random exchanges

executed are made tabu to prevent a return. For our experiments, we obtained and
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used the original source code in C of Battiti and Tecchiolli [BT94]. The default

parameters provided by the authors were used in our experiments.

4.7 Comparison of GLS with Efficient QAP Heuristic Methods

In this section, we compare Multiple-GLS, found to be the best GLS variant, with

Ro-TS, RTS and also GH on problems of different size and nature. We first compare

GLS with Ro-TS and RTS on the set of small to medium used for comparing the GLS

variants. This problem set represents a good mixture of real-world and randomly

generated problems. Following that, we report results for GLS on a set of random

large QAP instances with sizes up to 100 generated by Skorin-Kapov [Sko90] and

compare our results with those reported by Talliard [Tai95] for Ro-TS, RTS and GH

on the same set of problems.

Before proceeding with the comparisons, we would like to clarify some issues relating

to the computation times required by Multiple-GLS. In particular, Multiple-GLS,

Ro-TS and RTS need around the same time to complete an iteration (i.e. complete

search of the neighbourhood). The dominant computation is the evaluation of the

O(n2) moves in the neighbourhood. This computation is conducted in almost exactly

the same way for all three methods. Actually, GLS is performing fewer moves than

the other two methods if allowed to run for the same the number of iterations. This is

because to escape from a local minimum GLS may perform more than one iteration

(i.e. neighbourhood searches) without executing a move. In between these iterations,

each penalty modification cycle requires O(n2) time to compute the feature costs and

utilities for the first feature set and O(n) time for the second feature set. Although, one

may think that GLS requires more time than tabu searches to complete the same

number of iterations because of the intervening penalty modification cycles that is not
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the case. The reason is that the iteration following a penalty modification cycle

requires less time for GLS than an iteration for tabu search since no move value

updates are made during this iteration. In addition, evaluating tabu restrictions on

moves requires in general more time than the corresponding calculation of penalty

differences in GLS. In fact, our implementation of Multiple-GLS proved to need less

time to complete the same number of iterations than our corresponding

implementation of Ro-TS7 for all but very large problems (e.g. n =100) and even in

that case, Ro-TS was less than half second per minute faster than Multiple-GLS. In

general, Multiple-GLS, Ro-TS and RTS can be considered to require roughly the same

amount of time to complete the same number of iterations. This is very important

since it allows us to make a fair comparison of these techniques based on the number

of iterations they perform.

4.7.1 Small To Medium Size QAPs

We compared Multiple-GLS with Ro-TS and RTS on the set of small to medium size

QAP instances used for the comparison of the GLS variants in section 4.5. Ro-TS and

RTS were allowed to run for 100,000 iterations on each problem and the results from

10 runs were averaged. The performance of Ro-TS and RTS was measured in terms of

the number of successful runs (i.e. runs that resulted in the best known solution) and

also solution quality (i.e. per cent excess above the best known solution). Given that

Ro-TS and RTS required roughly the same time to complete 100,000 iterations as

Multiple-GLS, results for Ro-TS and RTS can be directly compared with each other

                                                          

7 The implementations of Multiple-GLS and Ro-TS were both in C++ and they were sharing large parts of the
code. We tried to optimise as much as possible the non-shared parts of both methods.
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and with those for Multiple-GLS reported in Table 4.1. This comparison is made in

Table 4.2.

In this table, we see that GLS is highly competitive with Ro-TS and both methods are

much better than Re-TS. Ro-TS had just one more successful run than GLS while in

terms of solution quality, Ro-TS was better than GLS by just 0.0016%. This result is

so close that neither of these techniques can be said to be better than the other on this

set of problems.

RTS lagged behind both Re-TS and Multiple-GLS. This can be partly attributed to the

fact that the default parameters were used for Re-TS and partly to the case that the

method may not be suitable for these types of problems.

4.7.2 Large QAPs

Multiple-GLS uses the long-term penalties to distribute the search effort over the

whole of the search space. Long-term penalties are supported by the short-term

penalties which intensify search as the algorithm progresses into new regions. One

would expect, that for larger problems this may be an advantageous strategy to follow,

because of the systematic exploration strategy introduced by the long-term penalties.

Problem
Name

best
known
solution

Multiple-GLS
a1 = 0.5, a2 = 0.25,
t = 4n.

Robust Tabu Search
(Ro-TS)

Reactive Tabu Search
(Re-TS)

successful
runs

solution
quality

successful
runs

solution
quality

successful
runs

solution
quality

nug15 1150 10 0 10 0 10 0
nug20 2570 10 0 10 0 2 0.506
rou20 725522 10 0 10 0 10 0
nug30 6124 10 0 10 0 1 0.441
tho30 149936 10 0 10 0 10 0
kra30a 88900 10 0 10 0 9 0.134
kra30b 91420 8 0.015 10 0 7 0.039
ste36a 9526 9 0.01 7 0.019 0 1.094
ste36b 15852 10 0 10 0 9 0.025
tho40 240516 0 0.051 1 0.041 3 0.024
Total Successes 87/100 0.0076% 88/100 0.006% 61/100 0.2263%

Table 4.2 Comparison of Multiple-GLS with Robust Tabu Search and Reactive Tabu Search.
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To investigate the benefits of using Multiple-GLS on large problems, we tested

Multiple-GLS on a set of 12 large QAP instances from QAPLIB with sizes from 49 to

100 which have been randomly generated by Skorin-Kapov (see [Sko90] for details).

Talliard [Tai95] reports results for these instances for Ro-TS, RTS, and also GH. In

the competitive tests which Taillard performed on these problems, he allocates 1000n

iterations for the tabu searches and a roughly equivalent amount of time to the GH

method. We allowed Multiple-GLS to run for the same number of iterations. The

results from ten runs were averaged in each instance.

In Table 4.3, we compare the solution quality (i.e. mean excess) of Multiple-GLS with

those reported by Taillard for Ro-TS, RTS, and GH. The results are averaged when

several problems of the same size and type are solved.

In this table, we see that Multiple-GLS achieves the best solution quality with RTS

second, Ro-TS third and GH the worst method amongst the four. As Taillard points

out, the GH needs long computation times to be competitive on these problems. In

general, GH performs better on structured rather than random problems. However, the

comparison clearly indicates that GLS is competitive with all these state of the art

QAP methods and able to outperform them at least on the these particular problems

with the particular limit on the number of iterations. One possible explanation for this

is that using the long-term penalties, GLS more systematically diversifies search in

Problem Multiple-GLS Ro-TS Re-TS GH Best known Solution
Sko49 0.068 0.096 0.068 0.120 23386
Sko56 0.104 0.090 0.145 0.181 34458
Sko64 0.098 0.063 0.125 0.174 48498
Sko72 0.147 0.181 0.110 0.200 66256
Sko81 0.117 0.088 0.110 0.250 90998
Sko90 0.158 0.179 0.164 0.314 115534
Sko100a-f 0.118 0.162 0.141 0.264 150252.7
Mean Solution Quality 0.117 0.139 0.131 0.235

Table 4.3 Comparison of Multiple-GLS with Ro-TS, Re-TS and GH on large QAPs.
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large search spaces than the other methods while the intensification strategy adopted

by Multiple-GLS enables the algorithm to produce good solutions is short time.

4.8 Conclusions

In this chapter, we clearly demonstrated the applicability of the GLS algorithm to the

famous Quadratic Assignment Problem. The structure of the problem provided an

ideal candidate for examining the problem of variable feature costs and allowed us to

propose various strategies to resolve it. Retracting the effects of GLS decisions, when

the information they were based on becomes invalid, proved to be the best strategy for

resolving the problem. The use of parallel GLS processes aimed separately at the

intensification and diversification of search was also proposed in this context. The

final GLS variant adopting these modifications was compared to state of the art

techniques for the QAP. GLS proved to be highly competitive with these methods in

the experiments carried out, even outperforming them in large QAPs when time

resources are limited.
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5. Radio Link Frequency Assignment Problem

Chapter 5

Radio Link Frequency Assignment
Problem

In the last two chapters, we focused on two challenging but nonetheless simple

problems in terms of objectives and constraints. Modern applications frequently

require solving more complex problems than the TSP and QAP. Some of these

problems are not pure optimisation problems but also involve some aspects of

constraint satisfaction. In such cases, we sometimes seek solutions which violate the

minimum number of constraints. In more realistic settings, constraint violations incur

different costs and solutions are sought that minimise the total cost from constraint

violations and possibly other criteria. In this chapter, we examine how Guided Local

Search and Fast Local Search can be applied to such problems often referred to as

Partial Constraint Satisfaction Problems (PCSPs) or constrained optimisation

problems. The Radio Link Frequency Assignment Problem (RLFAP) is examined as a

representative problem in this class. RLFAP stems from real-world situations in
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military telecommunications. The effectiveness and efficiency of the GLS technique is

demonstrated on publicly available instances of the problem. Comparison with other

search techniques demonstrates the advantages of the GLS method over alternative

approaches to PCSPs.

5.1 Partial Constraint Satisfaction Problem

The Partial Constraint Satisfaction Problem can model a variety of constraint

satisfaction problems with various forms of optimisation. In the classic CSP, one is

trying to assign values to finite domain variables such that a set of linear and/or

non-linear constraints on these variables are satisfied. In PCSP, the satisfaction of

constraints becomes the subject of optimisation and solutions that minimise the

number of constraint violations or more complex optimisation criteria are sought.

Before formally defining the PCSP, we introduce some terminology used in the CSP

related literature.

The assignment of a value to a variable is called a label. The label which involves the

assignment of a value v to the variable x (where v is in the domain of x) is denoted by

the pair <x,v>. A simultaneous assignment of values to a set of variables is called a

compound label and is represented as a set of labels, denoted by

(<x1,v1>,<x2,v2>,...,<xk,vk>). A complete compound label is a compound label

which assigns a value to every variable in the CSP. The goal in CSP is to find one or

all complete compound labels that satisfy the constraints.

A Partial Constraint Satisfaction Problem (PCSP) is a Constraint Satisfaction

Problem in which one is prepared to settle for partial solutions  solutions which

may violate some constraints or assignments of values to some, but not all variables 

 when solutions do not exist (or, in some cases, cannot be found) [FW92, Tsa93].
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This kind of situation often occurs in applications like industrial scheduling where the

available resources are not enough to cover the requirements. Under these

circumstances, partial solutions are acceptable and a problem solver has to find the

one that minimises an objective function.

The objective function is domain-dependent and may take various forms. In one of its

simplest forms, the optimisation criterion may be the number of the constraint

violations. For more realistic settings, some constraints may be characterised as "hard

constraints" and they must be satisfied whilst others, which are referred to as "soft

constraints", may be violated if necessary. Moreover, constraints may be assigned

violation costs which reflect their relative importance. Partly following Tsang [Tsa93],

we define the Partial Constraint Satisfaction Problem formally as follows:

Definition 5.1:

A partial constraint satisfaction problem (PCSP) is a quadruple:

( )Z D C g, , ,
where
• { }Z x x xn= 1 2, ,...,  is a finite set of variables,

• { }D D D Dx x xn
=

1 2
, ,...,  is a set of finite domains for the variables in Z,

• { }C c c cm= 1 2, ,...,  is a finite set of constraints on an arbitrary subset of variables in
Z,
• g is the objective function which maps every compound label to a numerical value.

The goal in a PCSP is to find a compound label (partial or complete) which optimises

(minimises or maximises) the objective function g. Given the above definition,

standard CSPs and Constraint Satisfaction Optimisation Problems (CSOPs) (where

optimal solutions are required in CSPs, see [Tsa93]) can both be cast as PCSPs. Under
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the Partial CSP formulation, all compound labels (partial or complete) are candidate

solutions since constraint violations are part of the cost function.

Versions of branch and bound and other complete methods have been suggested for

tackling PCSPs [FW92, WF93, JFM96]. But complete algorithms are inevitably

limited by the combinatorial explosion problem. A heuristic method for the related

MAX-SAT problem has also been recently proposed by Jiang, Kautz, and Selman

[JKS95]. The method is a direct descendant of GSAT [SLM92] and uses random walk

for escaping local minima. To use the method for PCSPs, the PCSP problem has to be

converted to MAX-SAT. This conversion is not always straightforward and normally

result in a MAX-SAT problem with an even bigger search space than the original

PCSP8. Also, Wallace and Freuder [WF96] have tested restart, random walk and tabu

search variants of the min-conflicts heuristic [MJPL92] on random PCSPs of sizes up

to 100 variables minimising the number of constraint violations.

General heuristic methods such as Genetic Algorithms, Tabu Search and Simulated

Annealing have also been tried on PCSPs and in particular on the RLFAP problem.

The performance of these techniques is going to be examined later in this chapter.

5.2 The Radio Link Frequency Assignment Problem

The Radio Link Frequency Assignment Problem was abstracted from the real life

application of assigning frequencies (values) to radio links (variables). Eleven

instances of the problem, which involve various optimisation criteria, were made

publicly available by the French Centre d'Electronique l'Armament [RLFAP94]. The

                                                          

8 In fact, a PCSP with n variables each with domain size m will have a search space mn. The equivalent MAX-SAT
problem will have 2mn which in normally bigger than mn (because m < 2m when m ≥ 1).
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problem is NP-Hard and it is a variant of the T-graph colouring problem as introduced

by Hale [Hal80]. Two different types of binary constraints are involved in the RLFAP:

• The absolute difference between two frequencies must be greater than a given
number k (i.e. for two frequencies X and Y, |X - Y| > k);

• The absolute difference between two frequencies must be exactly equal to a
given number k (i.e. for two frequencies X and Y, |X - Y| = k).

The above constraints are either hard or soft constraints. A problem specifies the

variables which are subject to these constraints and the constraint graph is not

complete (i.e. not every variable is constrained by every other variable). If all the

constraints can be satisfied then either:

• (C1) the solution which assigns the fewest number of different values to the
variables,

• (C2) or the solution where the largest assigned value is minimal

is preferred. For insoluble problems, violation costs are defined for the constraints.

Furthermore, for some insoluble problems, default values are defined for some of the

variables. If any of the default values is not used in the solution returned, then a

predetermined mobility cost applies. Table 5.1 depicts the characteristics of the

RLFAP instances.

The eleven RLFAPs are ideal for testing the effectiveness of GLS in PCSPs because

they contain both soluble and insoluble problems and non-trivial optimisation criteria

RLFAP
Instance

No.
Variables

No.
Constraints

Soluble Minimise

Scen01 916 5,548 Yes number of different values used (C1)
Scen02 200 1,235 Yes number of different values used (C1)
Scen03 400 2,760 Yes number of different values used (C1)
Scen04 680 3,968 Yes number of different values used (C1)
Scen05 400 2,598 Yes number of different values used (C1)
Scen06 200 1,322 No maximum value used (C2)
Scen07 400 2,865 No weighted constraint violations
Scen08 916 2,744 No weighted constraint violations
Scen09 680 4,103 No weighted constraint violations + mobility costs
Scen10 680 4,103 No weighted constraint violations + mobility costs
Scen11 680 4,103 Yes number of different values used (C1)

Table 5.1 Characteristics of RLFAP instances. The domains of variables consist of 6-44 integer values.
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are defined for both soluble and insoluble problems. Besides, results from other

research exists, which could be used to measure the success of GLS. In RLFAP,

complete compound labels are sought. For PCSPs where partial compound labels are

sought, the reader can refer to chapter 6 where GLS is used to tackle a real world

workforce scheduling problem in this last category.

5.3 Local Search for Partial PCSPs

A local search procedure for Partial CSPs can be based on the min-conflicts heuristic

of Minton et al. [MJPL92] and the computational model of the GENET network

[WT91, Tsa93, DTWZ94]. An 1-optimal type move can be used which changes the

value of one variable at a time. Starting from a random and complete assignment,

variables are examined in an arbitrary static order. Each time a variable is examined,

the current value of the variable changes to the value which yields the minimum value

for the cost function. Ties are randomly resolved allowing moves which transit to

solutions with equal cost. These moves, often called sideways moves [SLM92],

enable local search to examine plateau of states occurring in the landscapes of many

CSPs and Partial CSPs. One problem with sideways moves is that of detecting local

minima. This problem can be overcome using the limited sideways scheme described

in [VT94] and also [Dav97]. In particular, we characterise a solution as a local

minimum when all variables have been examined and no change occurred in the value

of the cost function. Although we allow sideways moves to occur locally, if these

moves do not result in a better solution after all variables have been examined then a

local minimum is concluded.
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The pseudocode in Figure 5.1 depicts a basic local search procedure for PCSPs. The

procedure starts with a solution Si (which is a compound label as described in section

5.1) and returns a local minimum solution Si+1.

5.4 Guided Local Search for Partial CSPs

Applying guided local search to a problem simply requires the existence of a local

search procedure, preferably a version of fast local search, and also a set of features

which will be used to bias local search. Both prerequisites are domain dependent

allowing the GLS algorithm to adapt to particular combinatorial optimisation

problems. A local search procedure for PCSPs has been described in the last section.

Fast local search for PCSPs will be explained later in this chapter. For the moment,

we focus our attention on the features to be used in PCSPs. In particular, we examine

the features used in the RLFAP instances. The same or similar features can be used in

many other problems in the PCSP class.

procedure LocalSearch(Z, D, g, Si)
begin

S ← Si;
repeat

gbefore ← g(S);
for each variable x in Z do
begin

S ← S - {<x,vi>};
for each value v in Dx do

gv ← g(S + {<x,v>});
BestSet ← set of values with minimum gv;
vi+1 ← random value in BestSet; (* sideways moves *)
S ← S + {<x,vi+1>};

end
gafter ← g(S);

until (gafter = gbefore) (* local minimum is concluded *)
Si+1 ← S;
return Si+1;

end

Figure 5.1 Local Search for PCSPs in pseudocode
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5.4.1 Constraints

The main cost factor in PCSPs is constraint violation costs (sometimes described as

relaxation costs). In a simple setting, all the problem’s constraints have violation costs

defined (high for hard constraints) which denote their relative importance. The cost of

a solution is given by the sum of violation costs for the constraints violated by the

solution. To define a basic cost function for the problem, each constraint ci in the

problem is represented by an indicator function Ici
which takes the value 1 (if the

constraint is violated) or the value 0 (if the constraint is satisfied). This indicator

function has the following form:

Eq. 5.1                              ( )I Sci
=


 

1
0
,
,

if S violates constraint c
if  S satisfies constraint c

i

i

where S is a compound label as described in section 5.1.

A cost function accounting only for constraint violations can be defined as follows:

Eq. 5.2                                 ( ) ( ) ( )g S I S ViolationCost cc i
i

m

i
= ⋅

=
∑

1

where ViolationCost is a function which maps each constraint to its violation cost.

A basic set of features can be defined for this cost function by considering the

representation of constraints as indicator functions. Each constraint in the problem is

interpreted as a feature with an indicator function as given by Eq. 5.1 and a feature

cost as given by the violation cost of the constraint. The augmented cost function for

Eq. 5.2 has the following form:

Eq. 5.3                  ( ) ( ) ( ) ( )h S I S ViolationCost c I S pc i
i

m

c c
i

m

i i i
= ⋅ + ⋅ ⋅

= =
∑ ∑

1 1
λ .
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Essentially, the above augmented cost function introduces an extra penalty parameter

pci
for each constraint ci in the problem. The role of these extra penalty parameters is

to enable GLS to guide local search towards the satisfaction of all or particular

constraints. Note here, that feature costs although equal to the violation costs are not

incorporated for a second time in the augmented cost function. They are solely used to

determine which features (i.e. constraints) are to be further penalised in a local

minimum. In the case of PCSPs, the utility function of GLS (see Eq. 2.5) takes the

following form:

Eq. 5.4                                ( ) ( )
( )

Util S c I S
ViolationCost c

pi c
i

c
i

i

, = ⋅
+1

.

GENET’s learning scheme is essentially a version of the above penalty modification

mechanism where ( ) ( )Util S c I Si ci
, =  and thus all violated constraints are penalised.

Let us consider now the RLFAP. In the RLFAP, a set of constraints is given for each

instance. Apart from relaxing each constraint and including its violation cost in the

cost function using an indicator function, each constraint defines a feature which is

used to guide local search. Feature costs are set equal to the corresponding violation

costs and the cost function is augmented with a set of modifiable penalty parameters

one for each constraint (see Eq. 5.3). Initially, the penalty parameters are set to 0 and

each constraint (if violated) accounts only for its violation cost. Each time local search

settles in a local minimum, the penalties for some of the constraints violated (the

corresponding features are exhibited) are increased according to the general scheme

described in section 2.6 using the utility function Eq. 5.4. Constraints with high

violation costs are penalised more frequently than those with low costs because of Eq.

5.4. In the short term, local search escapes from the local minimum while in the long



114

term, it is biased to spend more time on solutions that satisfy high cost constraints

rather than low cost constraints.

5.4.2 Assignment Costs.

Some of the insoluble RLFAP instances (Scen09 and Scen10) involve assignment

costs. In particular, a cost is incurred when a variable is assigned a value which is

different from a default value provided. These costs are called mobility costs and

apply to only some of the variables. RLFAP mobility costs are comparable to

constraint violation costs and are linearly combined with constraint violation costs to

form the objective function.

The local search of Figure 5.1 remains unchanged for these problems. If GLS were

also to remain unchanged then the distribution of the search effort would only be

determined by the constraint violation costs ignoring the extra mobility costs to be

minimised. This will not result to the best possible performance. Extra information

pertaining to mobility costs may be exploited to affect the distribution of the search

effort. The set of features based on constraints is augmented with extra features that

detect assignments of particular values to variables which incur mobility costs. The

costs of these new features are set equal to the corresponding mobility costs. GLS

operates on the combined set of features which now contains both constraints and

assignments.

5.4.3 Minimise the Number of Different Values Used

In resource allocation problems, the main concern is the efficient utilisation of

resources. In many cases, this translates into satisfying all requests using the minimum

number of resources possible. Frequencies are the resources in RLFAP. As mentioned
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in section 5.2. some of the RLFAP instances are soluble (Scen01-05 and Scen11). For

these instances, solutions are sought that satisfy all constraints and also use as few

frequencies as possible. In other words, the goal is to find a solution which satisfies all

constraints and also minimises the number of different values used. The problem is

similar to finding the minimum number of colours (i.e. chromatic number) needed to

colour a graph.

One possibility is to include this criterion in the cost function as it is described for

graph colouring by Johnson et al. [JAMS91]. The alternative approach examined here

is not to include this criterion in the objective function but instead to bias local search

using penalties such that this criterion is minimised. In particular, a feature is defined

for each value in the union of the domains. This feature is exhibited only when the

corresponding value is assigned to at least one of the variables. By penalising the

feature, we can discourage the associated value from being assigned to any of the

variables. The costs of these features should be such that we prefer to penalise values

that are assigned to only a few of the variables. The motivation is that values that are

assigned to only a few of the variables could be swapped for values that are assigned

to many of the variables, so decreasing the total number of values used. The fewer the

number of variables that are assigned a value the higher should be the cost of the

related feature. For a value v in the union of domains the cost of the associated feature

fv is given by:

Eq. 5.5                        ( )c s fv v*, =
total number of variables

(number of variables assigned value  in s*) +  1

where s* is the local minimum solution in the context of which the feature cost is

evaluated. The above feature costs are not constant like those in sections 5.4.1 and

5.4.2. This is because we cannot be sure which value can be avoided unless a solution
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has been found that satisfies all the constraints. If the solution violates some of the

constraints, these constraints are penalised first, taking precedence over the value

features in the penalty modification scheme. This leads to a feature set hierarchy

where feature sets at the lower levels of the hierarchy are only penalised if no features

of higher levels are exhibited.

5.4.4 Minimise Maximum Value Used

This last criterion is involved in only one of the RLFAP instances (Scen05). The

approach taken for this criterion was to penalise constraints first and if these were

satisfied to penalise the maximum value used without considering the utility function

(Eq. 2.5).

5.5 Fast Local Search for Partial CSPs

A greedy local search for PCSPs evaluates all possible 1-optimal moves over all

variables before selecting and performing the best move. The local search procedure

described in section 5.3 is already a faster alternative to greedy local search since the

neighbourhood is confined to the values of each variable. In spite of that, further

improvements may be introduced in the algorithm of Figure 5.1 using the activation

bits technique of Fast Local Search described in section 2.8.

In the case of PCSPs, a bit is attached to each problem variable. If the bit of a variable

is 1 then the variable is called active and it is examined for improving moves

otherwise it is called inactive and it is ignored by local search. Whenever a variable is

examined and a move is performed the activation bit of the variable remains set to 1

otherwise it turns to 0 and the variable is not examined in future iterations.

Additionally, if a move is performed, activation spreads to other variables which have
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their bits set to 1. In particular, we set to 1 the bit of variables where improving moves

may occur as a result of the move just performed. In general, such variables are those

that are connected via a constraint to the variable where the current move was

performed. Three main schemes for the spreading of activation may be used. The

schemes determine which variables are to be activated when the value of a variable

changes and they are the following:

S1. Activate all variables connected via a constraint to the variable which changed value.
S2. Activate only variables that are connected via a constraint which is violated.
S3. Activate only variables that are connected via a constraint that changed state (i.e. violated
→ satisfied or satisfied → violated) as a result of the move.

S2 and S3 are the more approximate schemes among the three, activating fewer

variables than S1.

The overall procedure starts with all the bits set to 1. The variables are continuously

scanned from first to last. Only variables with the bit set to 1 are being searched. Each

time a variable is searched and its value is changed, the variable remains active and

also activation spreads to other related variables according to one of the activation

schemes (S1, S2, or S3). On the other hand, if the value of the variable is not changed

the variable becomes inactive (i.e. the bit is set to 0). The process stops under the

same conditions that apply to local search without activation bits depicted in section

5.3.

 Each time local search settles in a local minimum, GLS penalises some of the

features. A limited number of variables are activated and a fresh fast local search cycle

starts. Depending on the features penalised, we activate variables relating to these

features such that moves examined aim at removing the penalised features from the

solution. Table 5.2 gives the relation between features penalised and variables

activated.
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Next, we give results indicative of the performance of GLS on the RLFAP instances.

Some of these results were up to recently the best known solutions for these instances.

5.6 Performance of Guided Local Search on the RLFAP Instances

To evaluate the performance of GLS, we apply it to the eleven instances of RLFAPs in

the public domain [RLFAP94]. The objective is to evaluate the above mentioned

different activation schemes for GLS, find out whether GLS could possible find

solutions in all soluble problems, and find good quality solutions in all the problems.

Experiments performed on the RLFAP using each of the three activation schemes

showed that all schemes perform equally well in terms of solution quality with S3

having a slight advantage in run times over scheme S2 and being much faster than

scheme S1. The results reported here give the average performance of the algorithm

using the activation scheme S3.

Ten runs were performed on each instance starting from random initial solutions. In

each run, the algorithm was allowed to complete 100,000 penalty cycles (i.e. GLS

iterations as in Figure 2.2) before being stopped. Hard constraints in all instances were

assigned a high violation cost of 1,000,000. The regularisation parameter λ was also

set to this value though values of λ in the range [2×105, 2×106] also performed well.

Table 5.3 presents the results obtained. Experiments were performed on a DEC Alpha

3000/600 (175 MHz) with GLS implemented in C++.

Feature penalised Activate
Constraint Variables associated with the constraint
Assignment Variable the assignment refers to
Value Variables assigned the value

Table 5.2 Associations between features penalised and variables activated.
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The tunnelling algorithm, a predecessor of GLS, significantly improved the best

known solutions on the RLFAP that accompanied the initial release of the instances

(see [VT94]). GLS with fast local search found even better solutions, improving over

the tunnelling algorithm in many instances. Table 5.4 summarises the best solutions

found by GLS for the RLFAP instances. Note here that solutions for Scen02-Scen05

have been proven optimal by complete search techniques [THL95].

RLFAP
Instance

Best
Solution

Average Cost (Std. Dev.) Worst Solution Average
Iterations

Average Time
(CPU sec.)

Scen01 16 18.6 (2.3) 22 1,895 8.77
Scen02 14 14 (0.0) 14 233 0.59
Scen03 14 15.4 (1.3) 18 1,626 5.62
Scen04 46 46 (0.0) 46 60 0.46
Scen05 792 792 (0.0) 792 1,584 8.50
Scen06 3,628 4,333.8 (766.0) 6,042 34,365 120.87
Scen07 427,054 530,641.1 (79,666.7) 700,685 20,412 78.79
Scen08 294 335.7 (34.7) 377 50,626 232.88
Scen09 15,805 15,999.7 (194.7) 16,340 31,150 129.4
Scen10 31,533 31,686.6 (146.1) 31,942 64,258 297.29
Scen11 28 not applicable Not solved 21,577 93.97

Table 5.3 Average performance of GLS on the RLFAP instances.

RLFAP Instance Best solutions
 found by GLS

Scen01 16
Scen02 14
Scen03 14
Scen04 46
Scen05 792
Scen06 3,570
Scen07 374,705
Scen08 282
Scen09 15,680
Scen10 31,517
Scen11 28

Table 5.4 Best solutions for RLFAP found by GLS.
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5.7 Comparison with Extended GENET and a Tabu Search Variant.

Independently from this work another method also based on the GENET neural

network has been developed for the RLFAP by G. vom Scheidt [Sch95]. The method

is like GENET a neural network architecture and is described in the paper by Boyce et

al. [BDST95] where it is compared with a tabu search variant. For convenience, we

shall call this method extended GENET. Extended GENET in pure algorithm terms

(after removing the neural network element) has many similarities as well as

differences with GENET [WT91, DTWZ95] and GLS. Although it uses an augmented

cost function (minimised by the NN), it penalises all constraint violations by

increasing penalties proportionally to the constraint violation costs. No scheme is used

for distributing the search effort (no memory of past actions) though a similar effect is

attempted by varying penalty increments amongst constraints. Minimisation of the

number of different values used is achieved by incorporating an additional cost term

to the cost function weighted by an appropriate coefficient. The algorithm has not

been applied to instances involving mobility costs (Scen09 and Scen10). Extended

GENET makes use of a fast local search procedure using an activation scheme similar

to S1 but does not consider sideways moves.

Table 5.5 contrasts the results reported in Boyce et. al [BDST95] for tabu search and

extended GENET with those reported for GLS in Table 5.3. Experiments in

[BDST95] were also performed on DEC Alpha machines with the algorithms

implemented in C++ and therefore a relatively fair comparison in running times can

be made. As one can see in Table 5.5, GLS outperforms both extended GENET and

the tabu search variant. For problems (Scen01-Scen05), GLS succeeded more times in

finding the optimum than either tabu search or extended GENET. Moreover, GLS

found better solutions than these two methods in all the insoluble instances
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(Scen06-Scen10). For problem Scen11, the other methods tried to find an assignment

that satisfied the constraints and therefore no comparison can be made with GLS

which went further trying to minimise the number of different values used. In terms of

run times GLS was between 6 and 56 times faster than extended GENET while tabu

search required an enormous amount of time in comparison with either extended

GENET or GLS probably because of inefficient implementation.

Table 5.6 provides further evidence on the superiority of GLS over extended GENET.

The solution quality of GLS is compared with that of extended GENET on the

insoluble problems (Scen06-Scen09). Results for extended GENET are from [Sch95].

                                                          

9 For Scen11, GLS minimizes the number of different values used while tabu search and extended GENET simply
try to find a assignment that satisfied the constraints.

RLFAP best solution found found optimum average time
Instance GLS Ext.

GENET
Tabu
Search

GLS Ext.
GENET

Tabu
Search

GLS Ext.
GENET

Tabu
Search

Scen01 16 16 18 30% 20% n.a. 8.77sec 75sec 3hrs
Scen02 14 14 14 100% 100% 70% 0.59sec 9sec 4min
Scen03 14 14 14 40% 10% 20% 5.62sec 32sec 34min
Scen04 46 46 n.a. 100% 100% n.a. 0.46sec 12sec n.a.
Scen05 792 792 n.a. 100% 30% n.a. 8.50sec 8min n.a.
Scen06 3,628 3,852 9,180 - - - 2min 10min 14min
Scen07 427,054 435,132 6,541,695 - - - 1.3min 18min 46min
Scen08 294 366 1,745 - - - 3.9min 32min 6hrs
Scen09 15,805 n.a. 16,873 - - - 2.2min n.a. 18min
Scen10 31,533 n.a 31,943 - - - 5min n.a 2hrs
Scen119 28 values  0 viol. 0 viol. 80% 60% 60% 1.6min 25sec 54min

Table 5.5 Comparison of GLS with tabu search and extended GENET. Results for tabu search and extended

GENET are from Boyce et al. [BDST95].

RLFAP Average Solution Cost (Average CPU Time) Percentage excess of Ext. GENET
solutions over GLS solutions
 (Times faster than GENET)

Instance GLS Extended GENET

Scen06 4,333.8 (2 min) 5,076 (10.2 min) 17% (5 times)
Scen07 530,641.1 (1.3 min) 727,458 (18.3 min) 37% (14 times)
Scen08 335.7 (3.9 min) 451 (31.7 min) 34% (8 times)

Table 5.6 GLS and extended GENET on insoluble instances. Results for extended GENET are from

[Sch95].
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5.8 Comparison with the CALMA Project Algorithms

The RLFAP instances were made publicly available in the framework of the European

collaborative project CALMA (Combinatorial Algorithms for Military Applications).

Six research groups from three countries participated in the project. Summary results

have been reported recently by Tiourine et al. [THL95] on a set of algorithms,

including extended GENET and tabu search mentioned in the last section, developed

by the six CALMA project research groups. In Table 5.7, we compare these summary

results (from Tiourine et al. [THL95]) with the results for GLS.

As it can be seen in Table 5.7, GLS achieves a very good performance compared with

the other algorithms and taking into account the values of the best known solutions. In

summary, it applies to all problems finding solutions of high quality while it is many

times faster than the other algorithms. Algorithms which produce marginally better

solutions than GLS (e.g. Genetic Algorithms-LU) were applied to only a subset of the

problems and require substantially more time, fine tuning and probably

implementation effort. On the other hand, although algorithms such as SA-EUT,

extended GENET-KCL and Variable Depth Search-EUT, are applied to most

problems and find solutions of good quality, they are between 5 to 100 times slower

than GLS (especially on the insoluble instances). This cannot be attributed just to the

different machines used in experiments. Besides, although the GA by UEA produces

good results for Scenarios 6 and 11, it performs badly in Scenarios 7 and 8; compared

to it, GLS is not only much faster, but also more consistent in its performance.

Bessiere et al. [BFR95] also applied arc-consistency algorithms to Scenarios 3, 5, 8

and 11. Since only the satisfiability issue (not optimisation) was addressed their

results are not comparable with the rest in this section. To conclude, GLS is a highly

competitive, if not the best, method amongst the algorithms developed so far for the
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problem that are known to us. It is the fastest algorithm which consistently provides

quality solutions (never much worse than the best found so far, sometimes the best).

Significantly, this is achieved almost without any tuning required.

5.9 Discussion

We are well aware of the danger of over-generalising results obtained in competitive

tests, especially when running time is compared, as Hooker pointed out [Hoo95]. In

the experiments, we have shown that GLS is capable of solving RLFAPs where

solutions exist, and finding solutions with top quality in insoluble RLFAPs, compared

with, and in many cases, better than, other state-of-the-art algorithms designed for

RLFAPs.

The running time that we present in Table 5.7 is meant for reference only. The timing

should not be compared seriously, especially when different machines have been used

and we know nothing about the software platforms used in other research projects.

However, there is some value in reporting the running time: it gives an idea for

evaluating algorithms.

5.10 Conclusions

In this chapter, the application of the method to Partial CSPs was studied in the

context of a real world PCSP, namely the Radio Link Frequency Assignment Problem

(RLFAP). Results reported on RLFAP demonstrated the effectiveness and efficacy of

the method. The technique finds high quality solutions in very short running times,

outperforming alternative schemes suggested for the problem. Given the generality

and effectiveness of the approach, GLS can be considered a promising optimisation

technique for real world constrained optimisation problems.
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6. Workforce Scheduling

Chapter 6

Workforce Scheduling

In the last chapter, we presented the application of GLS and FLS to a constrained

optimisation problem in which the main objective was the minimisation of constraint

violations. Constrained optimisation problems are not always of this type. In many

domains, partial solutions are sought which assign values only to a subset of the

variables such that all the problem’s constraints are satisfied. Such problems are very

useful in modelling overloaded resource allocation systems. In these systems, hard

resource constraints are satisfied only if a subset of activities is allocated resources or

in PCSP terms if a subset of the variables is assigned values. A penalty (or utility) is

defined for each activity when this activity is not allocated (or allocated) resources. If

penalties are used instead of utilities then the optimal solution is that which minimises

the sum of penalties for the unallocated activities. NP-hard problems such as the

Maximum Knapsack [MT90], Maximum Channel Assignment [Sim90] and
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Bandwidth Packing [LG93, AFPR93] are of this type. In this chapter, we are going to

examine BT’s Workforce Scheduling which apart from the above characteristics also

incorporates elements from the well-known Vehicle Routing Problem with Time

Windows (VRPTW) [Sol87]. The problem examined in here is representative of the

situations arising in the Work Manager job allocation system of British

Telecommunications plc. Work Manager is probably the largest automated job

allocation system in the world providing work for almost 20,000 field engineers.

6.1 BT's Workforce Scheduling Problem

The problem is to schedule a number of engineers to a set of jobs, minimising total

cost according to a function which is to be explained below. Each job is described by

a triple:

(Loc, Dur, Type)

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is the

standard duration of the job and Type indicates whether this job must be done in the

morning, in the afternoon, as the first job of the day, as the last job of the day, or

"don't care".

Each engineer is described by a 5-tuple:

(Base, ST, ET, OT_limit, Skill)

where Base is the x and y co-ordinates at which the engineer locates, ST and ET are

this engineer's starting and ending time, OT_limit is his/her overtime limit, and Skill is

a skill factor between 0 and 1 which indicates the fraction of the standard duration that

this engineer needs to accomplish a job. In other words, the smaller this Skill factor,

the less time this engineer needs to do a job. If an engineer with skill factor 0.9 is to
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serve a job with a standard duration (Dur) of 20 then this engineer would actually take

18 minutes to finish the job.

The cost function which is to be minimised is defined as follows:

Eq. 6.1                           ( )TotalCost TC OT Dur Penalty UFi
i
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where: 

NoT = number of engineers,
NoJ = number of jobs,
TCi = Travelling Cost of engineer i,
OTi = Overtime of engineer i,
Durj = Standard duration of job j,
UFj = 1 if job j is not served; 0 otherwise,
Penalty = constant (which is set to 60 in the tests).

The travelling cost between (x1, y1) to (x2, y2) is defined as follows:
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Here ∆x is the absolute difference between x1 and x2, and ∆y is the absolute difference

between y1 and y2. The greater of the x and y differences is halved before summing.

Engineers are required to start from and return to their bases everyday. An engineer

may be assigned more jobs than he/she can finish.

6.2 Local Search for Workforce Scheduling

To tackle BT's workforce scheduling problem, we represent a candidate solution (i.e. a

possible schedule) by a permutation of the jobs. Each permutation is mapped into a

schedule using the deterministic algorithm depicted in Figure 6.1:
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Given a permutation, local search is performed in a simple way: a pair of jobs is

examined at a time. Two jobs are swapped to generate a new permutation if the new

permutation is evaluated (using the Evaluation procedure above) to a lower cost than

the original permutation.

The starting point of local search is generated heuristically and deterministically: the

jobs are ordered by the number of qualified engineers for them. Jobs which can be

served by the fewest number of qualified engineers are placed earlier in the

permutation.

6.3 Fast Local Search for Workforce Scheduling

So far we have defined an ordinary first improvement local search algorithm. Each

solutions has O(n2) neighbours, where n is the number of jobs in the workforce

scheduling problem.

To apply the fast local search to workforce scheduling, each job permutation position

has associated with it an activation bit, which takes binary values (0 and 1). These bits

are manipulated according to the general FLS algorithm of section 2.8. In particular,

procedure Evaluation (input: one particular permutation of jobs)
1. For each job, order the qualified engineers in ascending order of the distances

between their bases and the job (such orderings only need to be computed once and
recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation. For each
job x, try to allocate it to an engineer according to the ordered list of qualified
engineers:
2.1. to check if engineer g can do job x, make x the first job of g; if that fails to

satisfy any of the constraints, make it the second job of g, and so on;
2.2. if job x can be fitted into engineer g's current tour, then try to improve g's

new tour (now with x in it): the improvement is done by a simple 2-opting
algorithm (see section 3.2), modified in the way that only better tours which
satisfy the relevant constraints will be accepted;

2.3. if job x cannot be fitted into engineer g's current tour, then consider the next
engineer in the ordered list of qualified engineers for x; the job is
unallocated if it cannot fit into any engineer's current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created, is
returned.

Figure 6.1 Algorithm for mapping job permutations into complete schedules
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1. all the activation bits are set to 1 (or "on") when local search starts;

2. the bit for job permutation position x will be switched to 0 (or "off") if every possible swap

between the job at position x and the other jobs under the current permutation has been

considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved in a swap

which has been accepted.

During local search, only those job permutation positions whose activation bits are 1

will be examined for swapping. In other words, positions which have been examined

for swapping but failed to produce a better permutation will be heuristically ignored.

Positions which are involved in a successful swap recently will be examined further.

The overall effect is that the size of neighbourhood is greatly reduced and resources

are invested in examining swaps which are more likely to produce better

permutations.

6.4 Guided Local Search for Workforce Scheduling

To apply GLS to workforce scheduling, we need to implement a local search

algorithm for workforce scheduling, identify a set of features to be used and assign

costs to them. In the previous section, we have described a fast local search algorithm

for BT's workforce scheduling problem.

Our next task is to define the solution features to be used and assign costs to them. In

the workforce scheduling problem, the inability to serve jobs incurs a cost, which

plays an important part in the objective function which is to be minimised. Therefore,

we intend to bias local search to serve jobs of high importance. To do so, we define a

feature for each job in the problem:
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The cost of this feature is given by (Durj + Penalty) which is equal to the cost

incurred in the cost function (Eq. 6.1) when a job is unallocated. The jobs penalised in

a local minimum are selected according to the utility function (Eq. 2.5) which for

workforce scheduling takes the form:
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The travelling cost is taken care of by the ordering of engineers by their distance to the

jobs in the local search described in the Evaluation procedure above as well as

2-Opting. (If the travelling cost in this problem is found to play a role as important as

unallocated jobs, we could associate a penalty to each possible edge as we did for the

TSP in chapter 3 to further minimise this cost factor). Integrated into GLS, FLS will

switch on (i.e. switching from 0 to 1) the activation bits associated with the positions

where the penalised jobs currently lie.

It may be worth noting that since the starting permutation is generated heuristically,

and local search is performed deterministically, the application of FLS and GLS

presented here does not involve any randomness.

6.5 Experimental Results and Comparison with GAs, SA and CLP.

The best results published so far on the workforce scheduling problem is in Azarmi &

Abdul-Hameed [AA95]. Azarmi & Abdul-Hameed have looked at simulated

annealing, constraint logic programming [Hen89, LWR95] and genetic algorithms

[Hol75, Gol89, Dav91, WT94, ERR94]. The results are based on a benchmark test
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problem with 118 engineers and 250 jobs. Each job can be served by 28 engineers on

average, which means the search space is roughly 28250, or 10360, in size. This suggests

that a complete search is very unlikely to succeed in finding the optimal solution.

Azarmi & Abdul-Hameed [AA95] reported results obtained by a particular genetic

algorithm (GA), two constraint logic programming (CLP) implementations, ElipSys

and CHIP, and a simulated annealing (SA) approach. Azarmi & Abdul-Hameed cited

Muller et. al. [MMS93] for the GA approach and Baker [Bak93] for the SA approach.

Results obtained by GA and CLP were "repaired" (i.e. amended by local search). All

the tests reported there relax the constraints in the problem by:

 (a) taking first jobs as AM jobs, and last jobs as PM jobs; and

 (b) allowing no overtime.

The best result (total cost) so far was 21,025, which was obtained by the SA approach.

No timing was reported on the tests. These results are shown in Table 6.1 (Group I).

To allow comparison between our results and the published ones, we have made the

same relaxation to the problem. The results are reported in Group II of Table 6.1. FLS

obtained a result of 20,732, which is better than all the reported results. This result is

further improved by GLS. The best result obtained in this group is 20,433, when λ is

set to 100 in GLS. Such results are remarkable as the best results published were

obtained by nontrivial amount of work by prominent research groups in UK. (Note

that a saving of 1% could be translated to tens of thousands of pounds per day!)

In the objective function, the overtime term is squared. This discourages overtime in

schedules, but it does not mean that a good schedule cannot have overtime. We tried

to restate this constraint, but gave each engineer a limit in overtime. The best result,

which were found by limiting overtime to 10 minutes per engineer, is shown in Group

III of Table 6.1. FLS in this group obtained a result of 20,224, which was better than
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all the results in Group II. The best result in Group III, which is 19,997, was found by

GLS when λ was set to 20.

The λ parameter is the only parameter that needs to be set in GLS (there are relatively

more parameters to set in both GA and SA). The above test results show that the total

cost is not terribly sensitive to the setting of λ.

6.6 The Role of FLS in BT’s Workforce Scheduling Problem

To evaluate the role of the activation bits in the efficiency of FLS, we compared FLS

with a best improvement local search algorithm which used the same moves as FLS,

Algorithms Total cost CPU time
(sec)

Travel cost Cost
(number) of
unallocated
jobs

over-time
cost

Group I: Best results reported in the literature (no overtime allowed):
GA 23,790 N.A. N.A. N.A. (67) disallow
GA + repair 22,570 N.A. N.A. N.A. (54) disallow
CLP - ElipSys + repair 21,292 N.A. 4,902 16,390 (53) disallow
CLP - CHIP + repair 22,241 N.A. 5,269 16,972 (48) disallow
SA 21,025 N.A. 4,390 16,660 (56) disallow
Group II: Best results on FLS and GLS with overtime disallowed:
Fast Local Search (FLS) 20,732 1,242 4,608 16,124 (49) disallow

λ = 10 20,556 5,335 4,558 15,998 (48) disallow
λ = 20 20,497 7,182 4,533 15,864 (49) disallow

Fast GLS λ = 30 20,486 6,756 4,676 15,810 (50) disallow
λ = 40 20,490 5,987 4,743 15,747 (48) disallow
λ = 50 20,450 3,098 4,535 15,915 (49) disallow
λ = 100 20,433 9,183 4,707 15,726 (48) disallow

Group III: Best results on FLS and GLS, with a maximum of 10 minutes overtime allowed:
Fast Local Search (FLS) 20,224 1,244 4,651 15,448 (51) 125

λ = 10 20,124 4,402 4,663 15,329 (50) 132
λ = 20 19,997 4,102 4,648 15,209 (49) 140

Fast GLS λ = 30 20,000 2,788 4,690 15,155 (48) 155
λ = 40 20,070 4,834 4,727 15,194 (48) 149
λ = 50 20,055 2,634 4,690 15,197 (49) 168
λ = 100 20,132 2,962 4,779 15,152 (48) 201

1. GA, CLP and SA results from Azarmi & Abdul-Hameed [AA95], Muller et. al. [MMS93] and
Baker [Bak93];

2. FLS and GLS are implemented in C++, all results obtained from a DEC Alpha 3000/600
175MHz machine.

3. The benchmark problem, which has 118 engineers and 250 jobs, was obtained from British
Telecom Research Laboratories, UK.

Table 6.1 Results obtained in BT's benchmark workforce scheduling problem.
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but without using activation bits to reduce its neighbourhood (we refer to this

algorithm as LS). The results are shown in Table 6.2.

When no overtime is allowed, FLS runs 16 times faster than LS, which converged to a

slightly worse local minimum. When a maximum of 10 minutes is allowed for

overtime, FLS runs 20 times faster than LS, though LS produced a slightly better

result. Our conclusion is that the activation bits help to speed up FLS significantly and

there is no convincing evidence that quality of results has been sacrificed in the

workforce scheduling problem.

6.7 Remarks

We have also experimented with random starting permutations and a starting

permutation with the jobs ordered by the ratio between their duration and the number

of qualified engineers. Their results are shown in Table 6.3.

Algorithms Total cost CPU time
(sec)

speedup
by FLS in
cpu time

Travel
cost

Cost
(number) of
unallocated
jobs

over-
time cost

No overtime
allowed

FLS 20,732 1,242 16 times 4,608 16,124 (49) disallow

LS 20,788 20,056 4,604 16,184 (50) disallow
Max. 10 min.
OT allowed

FLS 20,224 1,244 20 times 4,651 15,448 (51) 125

LS 20,124 25,195 4,595 15,358 (48) 171
Notes: Local Search (LS) use the same hill climbing strategy as FLS, but no activation bits are used;
Both algorithms implemented in C++, all results obtained from a DEC Alpha 3000/600 175MHz
machine.

Table 6.2 Evaluation of the efficiency of FLS.

Heuristics used in generating
starting permutation

Initial
Cost

After FLS After Fast GLS

cost cpu sec cost cpu sec
Random ordering 25,886 21,204 767 20,287 7,639
Job duration / # of qualified eng. 23,828 20,286 903 20,187 2,468
# of qualified engineers 22,846 20,224 1,218 20,132 2,962
Notes: a maximum of 10 minutes is allowed in overtime; a maximum of 500 penalty cycles is allowed
in GLS, which uses λ = 100; all programs implemented in C++; all results obtained from a DEC Alpha
3000/600 175MHz machine.

Table 6.3 Ordering heuristics used in starting permutation.
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In Table 6.3, an (almost) arbitrary λ value of 100 has been chosen to give the reader

more information about the sensitivity of GLS over this parameter (though this was

not the parameter under which the best result were generated when overtime was

allowed). Results in Table 6.3 show that the result of FLS can be affected by the initial

ordering of the jobs, though even the worst result is comparable with those reported in

the literature. However, Fast GLS is relatively insensitive to it - all the results of GLS

are better than the best result reported in the literature.

6.8 Conclusions

Real world problems are often characterised by complex objective functions, side

constraints and hierarchical structure. To deal effectively with them, it is sometimes

necessary to develop tailor-made techniques which combine together a number of

heuristics. These heuristics may operate at different stages of the optimisation process

or at different levels of the problem. Using BT’s workforce scheduling, we

demonstrated how GLS and FLS can provide the foundation for such tailor-made

techniques.

GLS and FLS easily integrate with each other and with the complex move operators

and heuristics often required. Moreover, they provide the tools to identify the most

important cost factors in the problem and minimise them effectively. Tuning is

relatively simple reducing the demands from the users of the scheduler. Finally,

solutions obtained by the GLS-FLS combination are of high quality and in the case of

BT’s workforce scheduling problem better than the best results reported in the

literature. Last but not least, this chapter viewed in conjunction with the chapter on the

RLFAP problem provides a complete guide for applying GLS and FLS to constrained

optimisation problems.
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7. Nonconvex Optimisation

Chapter 7

Nonconvex Optimisation

In the preceding chapters, we examined the application of Guided Local Search to a

number of hard combinatorial optimisation problems from the well-known TSP and

QAP to real world problems such as the RLFAP and BT’s Workforce Scheduling

problem. In this chapter, we are going to demonstrate that the potential applications of

GLS are not limited to optimisation problems of discrete nature but also to difficult

continuous optimisation problems.

7.1 Nonconvex Optimisation and Global Optimisation Methods

Continuous optimisation problems arise in many engineering disciplines (such as

electrical and mechanical engineering) in the context of analysis, design or simulation

tasks. Particularly difficult problems are those with non-linear multi-extremal cost

functions (that is functions with many local minima). These problems, also known as

nonconvex optimisation problems [HL95], are difficult to solve using deterministic
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gradient-based algorithms used extensively elsewhere in continuous optimisation.

Gradient algorithms can be easily trapped in the many local minima of the cost

function, so failing to reach the global minimum.

Global Optimisation (GO) methods which seek the global minimum are utilised to

solve such problems. The most simple global optimisation algorithm is to run a

gradient algorithm many times and from different starting points in the hope that the

global minimum will be amongst the local minima obtained over the many runs.

Example of such algorithm is the variation of the Sequential Unconstrained

Minimisation Technique suggested in [HL95]. Many other GO algorithms exist which

make use of gradient techniques or derive directly from general search methods such

as Genetic Algorithms [Hol75], Simulated Annealing [KGV83, Ing89], Function

Smoothing [ST90], Orthogonal Arrays with the GRG algorithm [KC93] to name but a

few.

7.2 Local Search for Continuous Optimisation Problems

Recently and mainly driven by the use of Genetic Algorithms [Hol75, Gol98, Dav91]

in combinatorial optimisation, GO methods have been developed which deal with

nonconvex optimisation as a combinatorial optimisation task. The idea is to convert

the continuous problem to a discrete one by encoding the real variables of the cost

function as binary strings.

In the case of binary encoding, a binary string value is interpreted to represent an

integer in base-2 notation. The mapping of the binary string to a real variable works as

follows. The binary string value is first converted to the corresponding integer. This

integer is then scaled by the appropriate coefficient to give a real value in the desired

range (i.e. domain of variable) [Dav91]. One binary string is used for each problem
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variable and combinatorial search is utilised to find these binary string configurations

which after decoding result in the optimal value for the real-valued cost function.

Increasing the number of bits used for representing each variable increases the

accuracy of the solution but also results in an increase of the combinatorial search

space.

Although binary encoding schemes were principally developed for Genetic

Algorithms, they have also been used in the context of local search [WZ93, BT94]. To

explain how local search operates in this case, let us consider the problem with two

variables x ∈ A ⊂ ℜ and y ∈ B ⊂ ℜ and a function f(x, y) to be minimised in A×B ⊂

ℜ2. A local search move flips the value of a bit in the binary string representing the

solution (comprises the binary strings of the function’s variables). In the x-y plane, bit

flips translate to “jumps” in either the x or y direction. The more significant the bit

changed, the larger the step of the “jump” performed. Local search starting from a

random binary string examines all possible bit flips and performs that which results in

the maximum reduction in cost (minimisation case). The new solution if better

replaces the old solution and the procedure continues from there on until a solution is

reached for which no further improvement is possible. As before, GLS can be used to

help local search escape from local minima moreover distribute search efforts in the

search space.

7.3 The Sine Envelope Sine Wave (F6) Function

As mentioned in section 7.1, nonconvex optimisation refers to non-linear

multi-extremal cost functions. An example of such a function, mentioned many times

in the literature, is the sine envelope sine wave function also known as F6 [Dav91,

WZ93, BT94]:
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minimised in the domain [-100,100]×[-100,100]. F6 has been suggested as a

benchmark for Genetic Algorithms [SCED89].      

A cross section of the function is shown in Figure 7.1. The global minimum of F6 is

located at (0,0) where the function takes the value 0. The basin of the global minimum

is very narrow and therefore difficult to reach unless a lucky start is made from within

the domain of attraction of the global minimum. The many local minima of the

function are arranged in concentric cycles around the global minimum forming an

ideal trap for hill-climbing based techniques. In F6, local gradients provide limited (if

any) information on the location of the global minimum. GLS may be exploited to

help local search to escape from local minima and moreover distribute search effort in

the search space.
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Figure 7.1 Cross section of F6 function
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7.4 Guided Local Search for Global Optimisation

GLS is iteratively posting constraints which modify the landscape and guide local

search out of local minima and towards promising areas in the search space.

Constraint posting in this problem could be based on information gathered during the

search process. For example, if local search reaches a local minimum then an

assumption can be made that the global minimum is unlikely to reside in the

surrounding area. Constraints could then be introduced that exclude this area from

being searched in future iterations. These constraints are essentially soft because we

cannot be sufficiently confident that local search thoroughly searches the space around

a solution when this solution is visited.

A set of features is defined that allow us to constrain solutions. A feature can be any

solution property represented by an indicator function (see section 2.4). A simple

setting for global optimisation is to divide the domains of variables into a number of

non-overlapping and equally-sized intervals. Let us consider the variable x∈(a,b]. A

set of features fi, i=1, ...,n, can be defined by the intervals (a0=a,a1], (a1, a2], ..., (an-1,

an=b] as follows:

Eq. 7.2                                               ( ) ( ]I x
x a a
otherwisei

i i=
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Each feature fi is attached to a penalty parameter pi to allow GLS to penalise solutions

that are characterised by the feature such that they can be avoided. The cost function is

augmented with penalty terms to form the augmented cost function. This function

replaces the original function and it is minimised instead. The augmented version of

F6 is defined as follows:
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where n the number of features defined over the domain of x, m is the number of

features defined over the domain of y, and λ is the parameter that controls the relative

importance of constraints with respect to the primary cost term (i.e. function to be

minimised). Initially, all penalty parameters of features are set to 0 (pxi = 0, pyj = 0, i =

1, ..., n , j = 1, ..., m). Each time local search settles in a local minimum, we simply

increment by one the penalty parameters of the features exhibited by the local

minimum (only two at a time). This increases by 2*λ the cost of all solutions that lie

in the intersection of the zones corresponding to the penalised features and by λ the

cost of all solutions that lie in either one of these zones (see Figure 7.2). As a result,

local search will primarily avoid the rectangular area with centre the local minimum

and also to a lesser degree the two zones that run parallel to the co-ordinate axis as

shown in Figure 7.2. This simple technique can be used to minimise arbitrary

functions. In fact, there is nothing that binds the method to F6 which may not be used

for other functions with two or more variables. In the following, we examine the

results obtained for F6.

local minimum

feature penalised

feature penalised

λ

2×

y

x

 Figure 7.2 Changes in cost due to penalising the features exhibited by a local minimum
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7.5 Experimentation with the F6 Function

Following Davis [Dav91], we used 22-bits for representing each variable. An equal

number of features was used to cover the domain of each variable (n=m). The

algorithm was relatively insensitive to the parameter λ and performed well for values

of λ greater than 0.2. The value 0.25 for λ was used in the tests. Experiments were

performed for varying n (i.e. number of features per variable) to determine how this

parameter affects GLS. The values tried for n were 5, 10, 15, 20, 50, and 100. Fifty

runs from random solutions (random binary strings) were performed for each value of

n considered with the iteration limit set to 10,000 local search improvement cycles.

Table 7.1 illustrates the results obtained. The best setting proved to be n=m=5. Under

this setting, the algorithm succeeded in finding the exact optimal solution (0,0) in

100% of 50 runs. Under all settings, the algorithms found the exact optimum many

times.

This performance further improves if more time is given to the algorithm. For

example, in the case (n=m=100) where most failures occurred (28 out of 50 runs), we

performed the same experiment but this time allowed the algorithm to complete

100,000 local search iterations. The performance of GLS significantly improved and

the algorithm found the exact optimum in 50 out of 50 runs (no failures).

 No. of features n=m=5 n=m=10 n=m=15 n=m=20 n=m=50 n=m=100
Mean Cost 0.00E+00 4.55E-11 3.19E-10 2.73E-10 1.97E-04 3.21E-04
Best Solution 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Worst Solution 0.00E+00 2.28E-09 2.28E-09 2.28E-09 9.72E-03 9.72E-03
Mean Iterations 2287.32 2566.22 2954.08 3526.9 4132.66 3738.48
Mean Time 2.823333 3.150668 3.634334 4.382333 5.188333 4.654
Mean Funct. Eval. 104958.6 117778.8 135588 161878.4 189675.6 171578.5
Optimal Runs 50 49 43 44 31 22
Total runs 50 50 50 50 50 50

Table 7.1 GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MHz).
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The main observation made was that GLS performance degraded as the number of

features used increased. More features meant more effort to leave a particular area but

also more careful exploration. For this particular function, diversification of search to

sample the whole search space proved important to find the global minimum quickly.

The distribution of points visited for n=m=10 during 10,000 iterations of local search

is shown in Figure 7.3. During the particular run that generated Figure 7.3, the optimal

solution was found early and after 1965 iterations. Despite that, the algorithm was

allowed to continue until 10,000 iterations were completed to get a better picture of

the solutions visited by the algorithm. As one can see in Figure 7.3, the algorithm

distributed its efforts over the whole of the search space but visited mainly local

minima. That is why points in are arranged in concentric cycles around the point (0,0).

-100

-50

0

50

100

-100 -50 0 50 100

Figure 7.3 All the points visited during the first 10,000 iterations of local search
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This is more clearly demonstrated in Figure 7.4 where a 3-D view of the visited points

is shown. The shape formed is exactly the bottom part of F6 which suggests that the

points are actually local minima in the great majority. Note here, that GLS is exploring

binary space and not numeric space. In general, local minima and their attraction

basins in the binary space are different from the local minima and their attraction

basins appearing in the numeric space. Because of the symmetrical landscape, the

binary encoding used and the structure of the GLS features, the majority of the

solutions visited by GLS in the case of F6 have the property of being numeric local

minima as illustrated in Figures 1.3 and 1.4. This is not necessarily the case for

functions with non-symmetrical landscapes. In these cases, grey encodings (see

[BT94] for example) and/or features of different structure may yield better

performance than the encoding scheme and features used in this chapter.
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Figure 7.4 3-D View of Figure 7.3
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7.6 Conclusions

In this chapter, we have shown that GLS has the potential to be utilised in the

optimisation of real-valued functions with numerous local minima, which are

considered to be difficult for gradient-based methods. The application of GLS to

optimise the F6 function, a benchmark for Genetic Algorithms, has been examined.

GLS repeatedly located the exact global optimum of the function. The chapter also

serves in demonstrating how artificial solution features can be created when no

features can be deduced from the structure of the objective function, which adds

support to our claim that GLS has wide applications.
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8. Summary and Conclusions

Chapter 8

Summary and Conclusions

This study demonstrated the effectiveness and efficiency of the GLS approach to

combinatorial optimisation alone or when combined with FLS. We demonstrated that

the use of information significantly improves simple local search heuristics

transforming them to powerful optimisation algorithms able to compete or even

outperform state of the art specialised methods. Furthermore, we demonstrated that

the proposed approach is general enough to be applicable to a diversity of problem

from the famous TSP and QAP to RFLAP and Workforce Scheduling and even to

continuous optimisation problems. In this last chapter, we summarise the research

conducted, conclude on GLS and FLS and also discuss the prospects of future

research on the subject.



146

8.1 Summary of the Research Conducted

Guided local search is a novel approach which facilitates the engineering of intelligent

search schemes which exploit problem and history information to guide a local search

algorithm in a search space. Constraints on solution features are introduced and

dynamically manipulated. The objectives of search intensification and diversification

are unified in the single objective of distributing the search effort according to

information. Various search distribution policies can be implemented. In this study,

we examined the case of distributing the search effort according to feature costs either

predetermined or evaluated during search.

We demonstrated the effectiveness of the proposed technique in two of the most

prominent problems in combinatorial optimisation, the TSP and the QAP.

Comparisons conducted with a total of fifteen methods for the TSP and four methods

for the QAP showed that the GLS algorithm is better than or at least very competitive

to many state of the art algorithms for the problems. Optimal or high quality solutions

were consistently found in a variety of instances from the problem libraries TSPLIB

and QAPLIB proving the robustness of GLS across these two landmark problems in

combinatorial optimisation.

The application of the method to real world problems with various objectives and

constraints was also studied in the context of the constrained optimisation problems of

Radio Link Frequency Assignment and Workforce Scheduling. GLS was compared

with twelve methods for the Radio Link Frequency Assignment Problem and five

methods for the Workforce Scheduling problem. These comparisons clearly

demonstrated the advantages of using GLS both in terms of solution quality and

running times. Solutions found in the benchmark instances of RLFAP and Workforce

Scheduling are amongst the best found so far for these problems. The applicability of
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GLS to NonConvex optimisation problems was also demonstrated laying the

foundations for the development of new methods based on GLS for this very

important class of problems.

The technique of FLS was also presented and the benefits from combining it with

GLS were studied in the TSP, RLFAP and Workforce Scheduling. The GLS-FLS

combination leads to highly efficient variants of GLS which are many times faster

than basic GLS without sacrificing solution quality.

Summarising the contents of the thesis, GLS was presented along with FLS. The

method was applied to five combinatorial optimisation problems and compared with

35 algorithms including some of the best heuristic methods for these problems.

Variants of almost all the general optimisation methods mentioned in the introduction

were compared with GLS in at least one of the problems examined. In particular, GLS

was compared with:

• Simulated Annealing on the TSP, RLFAP, and Workforce Scheduling,

• Tabu Search on the TSP, QAP, and RLFAP,

• Genetic Algorithms on the TSP, QAP, Workforce Scheduling, and RLFAP,

• Iterated Local Search on the TSP,

• Repeated Local Search on the TSP and QAP,

• Neural Networks on the RLFAP.

We believe that this is one of the most extensive studies for a newly presented

combinatorial optimisation method.

8.2 Concluding Remarks on GLS and FLS

For many years, general heuristics for combinatorial optimisation problems with most

prominent examples the methods of Simulated Annealing and Genetic Algorithms
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heavily relied on randomness to generate good approximate solutions to difficult

NP-Hard problems. The introduction and acceptance of Tabu Search by the

Operations Research community mainly due to the efforts of Glover, Laguna, Taillard,

de Werra, Hertz, Battiti, Tecchioli and others initiated an important new era for

heuristic methods where deterministic algorithms exploiting history information

started appearing and being used in real world applications.

8.2.1 Guided Local Search

Guided local search proposed in this thesis follows this trend. GLS heavily exploits

information (not only the search history) to distribute the search effort in the various

regions of the search space. Important structural properties of solutions are captured

by solution features. Solutions features are assigned costs and local search is biased to

spend its efforts according to these costs. Penalties on features are utilised for that

purpose.

When local search settles in a local minimum, the penalties are increased for selected

features of the local minimum. By penalising features appearing in local minima, GLS

avoids the local minima visited (exploiting historical information) but also diversifies

choices for the various structural properties of solutions captured by the solution

features. Features of high cost are penalised more times than features of low cost: the

diversification process is directed and deterministic rather than undirected and

random.

Feature costs contain uncertain information making sometimes speculative

assumptions about the desirability of particular structural properties of solutions.

Some of these properties could be essential parts of good solutions despite the high

cost they may incur on the solution cost. GLS is flexible in such cases by combining
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search intensification with the continuous diversification process caused by the

penalties on feature costs.

8.2.2 The Role of Parameter λλ

The task of combining diversification with intensification is accomplished by the

regularisation parameter λ which controls the influence of the information on the

search process. The local gradients are directing the search process to good solutions

undertaking the task of intensification. The parameter λ linearly combines the local

gradients with the penalties of GLS blending the two functions of intensification and

diversification. If λ is low then GLS is intensifying search slowing down the

diversification process. Conversely, if λ is high then the feature costs fully determine

the course of local search. For values of λ in the middle of these two extreme cases, an

optimal blending of intensification and diversification is achieved. Intensification of

search can also be achieved by using penalties of limited duration (see section 4.4.3)

or incentives implemented as negative penalties that encourage the use of specific

features rather than discourage them as with the penalties in the basic GLS. This last

case of incentives has not been explored in our work and it may lead to more

advanced schemes for guiding local search.

8.2.3 Fast Local Search

The selective diversification scheme of GLS where particular features are penalised

and alternative solutions structures are sought that avoid these features is ideally

combined with FLS which limits neighbourhood search to particular parts of the

overall solution.
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To allow the blending of local gradients with penalties, GLS increases the penalties

for features and subsequently invokes local search to remove the penalised features

from the solution. Because of λ, local gradients can affect this decision by allowing or

not allowing a move to be executed which removes the penalised features. This is an

essential part of the operation of GLS and enables the blending of intensification

(expressed by the local gradients) and diversification (expressed by the penalties).

FLS speeds up this blending allowing a quick test of the local gradients after a penalty

increase. The moves which remove the penalised features are checked and if no

improving move is found, control immediately returns to GLS which penalises

alternative features or the same features depending on the effort already invested in

these features as given by the penalties already applied to them.

In general, many penalty cycles may be required before a move is executed out of the

local minimum. This should not be viewed as an undesirable situation. It is caused by

the uncertainty in the information as captured by the feature costs which makes

necessary the testing of the GLS decisions against the local gradients. FLS

significantly reduces the computation times required to measure the local gradients in

a local minimum allowing far more many penalty modification cycles to be performed

by GLS for the same amount of running time.

8.3 Future Research

This thesis offers a first study of GLS and FLS. The method is still in its infancy and

future research is required to further develop the method and adapt it to other

problems. The use of incentives implemented as negative penalties which encourage

the use of specific solution features is one promising direction to be explored. Other

potentially interesting research directions include automated tuning of the
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regularisation parameter, definition of effective termination criteria, and different

utility functions for selecting the features penalised.

GLS could also be used to distribute the search effort in other techniques such as

Genetic Algorithms. In particular, GLS could be invoked at specific intervals to detect

the presence of particular features in a GA population and subsequently diversify or

intensify genetic search by applying penalties or incentives on particular features

which are considered “bad” or “good” respectively. The GA could be guided to avoid

or favour specific features spending its search efforts according to the information

which again can be captured in the form of feature costs. The same utility function

(Eq. 2.5) could be used by simply replacing the indicator function in Eq. 2.5 with a

measure taking values in the interval [0,1] that will reflect how frequently a feature is

appearing in the solutions of the population.

Finally, we found it very easy to adapt GLS and FLS to the different problems

examined in this thesis something which suggests that it may be possible to built a

generic software platform for combinatorial optimisation based on GLS. Although

local search is problem dependent, most of the other structures of GLS and also FLS

are problem independent. Furthermore, a step by step procedure is usually followed

when GLS is applied to a new problem (i.e. identify features, assign costs, etc.)

something which makes easier the use of the technique by non-specialists (e.g.

software engineers).
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10. Appendix A

Appendix A
Results on the Travelling Salesman Problem

The set of problems used in the evaluation of the Repeated Local Search, Guided

Local Search and Iterated Local Search (using the Double Bridge move) variants on

the TSP included 20 problems from 48 to 1002 cities all from TSPLIB (see Chapter 3

for details on these techniques). For each variant tested, 10 runs were performed from

random solutions and 5 minutes of CPU time were allocated to each algorithm in each

run on a DEC Alpha 3000/600 (175MHz) machine. To measure the success of the

variants, we considered the percentage excess above the optimal solution as in Eq.

3.5. For GLS variants, the normalised lambda parameter a was provided as input and

λ was determined after the first local minimum using Eq. 3.6. For GLS variants using

2-Opt, a was set to a = 1/6 while the GLS variants based on 3-Opt used the slightly

lower value a = 1/8 and the LK variants the even lower value a = 1/10. Results for

GLS are shown in Table A.1.

Iterated Local Search was using the Double Bridge move. No simulated annealing was

used which is roughly equivalent to the Large-Markov Chains Methods with

temperature T set to 0. Results for Iterated Local Search are shown in Table A.2.

Finally, Repeated Local Search was restarting from a random solution whenever local

search was reaching a local minimum. Results for Repeated Local Search are shown

in Table A.3. The names of the variants were formed according to the following

convention:

<meta-heuristic>-<local search type>-<neighbourhood type>.
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Problem No.Cities Mean Excess (%) over 10 runs
DB-FI-LK DB-FI-3Opt DB-FI-2Opt DB-FLS-LK DB-FLS-3Opt DB-FLS-2Opt

att48 48 0 0 0 0 0 0
eil76 76 0 0 0 0 0 0
kroA100 100 0 0 0 0 0 0
bier127 127 0 0 0 0 0 0
kroA150 150 0 0.001508 0.003393 0 0 0
u159 159 0 0 0 0 0 0
kroA200 200 0 0.077295 0.10113 0 0.004767 0.075252
gr202 202 0.009213 0.088396 0.457171 0 0.155129 0.257719
gr229 229 0.014116 0.157576 0.382387 0.004755 0.064115 0.124515
gil262 262 0.016821 0.20185 0.626577 0 0.075694 0.475189
lin318 318 0.255776 0.719027 1.14588 0.240786 0.279093 0.3519
gr431 431 0.332703 0.94403 2.13495 0.222386 0.394192 0.615294
pcb442 442 0.066367 0.368861 1.8961 0.081728 0.309977 0.684745
att532 532 0.225023 1.03554 2.64971 0.08163 0.270534 0.422957
u574 574 0.114348 1.20038 2.94269 0.092399 0.404823 0.553042
rat575 575 0.13731 1.15016 3.75904 0.097446 0.445888 0.649638
gr666 666 0.418878 1.25178 3.27054 0.175874 0.359528 0.816489
u724 724 0.356955 1.43617 3.94106 0.166547 0.367693 0.627535
rat783 783 0.240745 1.79764 5.00454 0.153305 0.516693 0.744947
pr1002 1002 1.04742 2.05625 5.19902 0.446332 0.872049 1.05727
Average Excess 0.161784 0.624323 1.675709 0.088159 0.226009 0.372825

Table A.2 Results for Iterated Local Search on the TSP.

Problem No.Cities Mean Excess (%) over 10 runs
GLS-FI-LK GLS-FI-3Opt GLS-FI-2Opt GLS-FLS-LK GLS-FLS-3Opt GLS-FLS-2Opt

att48 48 0 0 0 0 0 0
eil76 76 0 0 0 0 0 0
kroA100 100 0 0 0 0 0 0
bier127 127 0.218207 0.116586 0.019699 0.206625 0.002198 0
kroA150 150 0.029784 0.084075 0.000754 0.001508 0.001131 0
u159 159 0 0.460551 0.225285 0 0 0
kroA200 200 0.436189 0.526083 0.257083 0.088872 0.00681 0
gr202 202 0.732321 0.406375 0.309512 0.252988 0.011703 0
gr229 229 0.392788 0.468195 0.381644 0.152969 0.015007 0.004309
gil262 262 0.328007 0.723297 0.428932 0.084104 0.046257 0.004205
lin318 318 1.00264 1.74284 1.33884 0.583407 0.129197 0.02641
gr431 431 1.69438 2.71862 2.34071 0.563665 0.134003 0.023919
pcb442 442 0.966363 0.80783 1.36634 0.38816 0.038403 0.044311
att532 532 1.04746 2.28599 2.52871 0.386116 0.224662 0.089937
u574 574 1.36892 2.81263 3.66807 0.580951 0.278824 0.141444
rat575 575 0.806142 1.77174 2.25011 0.287908 0.171268 0.098922
gr666 666 1.66056 4.38707 6.00476 0.855251 0.497863 0.206279
u724 724 1.02505 2.25101 3.03054 0.61298 0.336674 0.168218
rat783 783 0.897116 2.24052 3.36929 0.511015 0.285033 0.161254
pr1002 1002 1.97877 3.31969 5.54336 1.04229 0.945357 0.620626
Average Excess 0.729235 1.356155 1.653182 0.32994 0.15622 0.079492

Table A.1 Results for GLS on the TSP.
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Problem No.Cities Mean Excess (%) over 10 runs
REP-FI-LK REP-FI-3Opt REP-FI-2Opt REP-FLS-LK REP-FLS-3Opt REP-FLS-2Opt

att48 48 0 0 0 0 0 0
eil76 76 0 0 1.35688 0 0 1.48699
kroA100 100 0 0.39564 0.222254 0 0.225543 0.215205
bier127 127 0.030098 0.403696 1.19629 0.027899 0.370386 1.29513
kroA150 150 0.002262 0.8317 2.00912 0.002262 0.8038 2.01553
u159 159 0 0.30038 1.62619 0 0.265447 2.05894
kroA200 200 0.024517 1.00688 3.30768 0.004767 0.922092 3.23583
gr202 202 0.141434 1.22958 3.58591 0.129731 1.19995 3.68352
gr229 229 0.097695 1.36774 3.40129 0.094427 1.27301 3.56443
gil262 262 0.054668 1.3709 5.12195 0.054668 1.2868 5.77796
lin318 318 0.629565 2.17992 4.37936 0.636703 2.022676 4.9128
gr431 431 0.679641 2.07801 5.33877 0.665232 2.20915 5.97495
pcb442 442 0.48525 1.77636 6.65012 0.516956 1.72417 7.19544
att532 532 0.530232 2.29033 6.28368 0.579354 2.29141 7.13899
u574 574 0.738382 2.91397 7.46674 0.703157 2.6934 8.4788
rat575 575 0.807618 2.69895 7.69231 0.887347 2.70781 8.61066
gr666 666 0.837619 3.18259 8.14712 0.847811 2.97203 9.94096
u724 724 0.933667 2.90551 7.76903 1.0241 2.87473 8.83202
rat783 783 1.00045 3.2864 8.46468 1.06518 3.39882 9.38792
pr1002 1002 1.5046 3.50511 8.62028 1.39138 3.59138 10.5847
Average Excess 0.424885 1.686183 4.631983 0.431549 1.64163 5.219539

Table A.3 Results for Repeated Local Search on the TSP.


